Show polynomial division steps

This page demonstrates how to generate ECC blocks by performing polynomial divison on a message polynomial. Just enter the coefficients of the message polynomial and the desired number of ECC blocks, then click Perform Division.

If the steps are unclear, please read the error correction generation section of the tutorial, which includes a detailed explanation of these steps.


(example: 32,91,11,120,209,114,220,77,67,64,236,17,236 )

(example: 13 )

Polynomial Division Steps

The first step to the division is to prepare the message polynomial for the division. The full message polynomial is:

70x15 + 247x14 + 118x13 + 86x12 + 194x11 + 6x10 + 151x9 + 50x8 + 16x7 + 236x6 + 17x5 + 236x4 + 17x3 + 236x2 + 17x1 + 236

To make sure that the exponent of the lead term doesn't become too small during the division, multiply the message polynomial by xn where n is the number of error correction codewords that are needed. In this case n is 18, for 18 error correction codewords, so multiply the message polynomial by x18, which gives us:

70x33 + 247x32 + 118x31 + 86x30 + 194x29 + 6x28 + 151x27 + 50x26 + 16x25 + 236x24 + 17x23 + 236x22 + 17x21 + 236x20 + 17x19 + 236x18

The lead term of the generator polynomial should also have the same exponent, so multiply by x15 to get

α0x33 + α215x32 + α234x31 + α158x30 + α94x29 + α184x28 + α97x27 + α118x26 + α170x25 + α79x24 + α187x23 + α152x22 + α148x21 + α252x20 + α179x19 + α5x18 + α98x17 + α96x16 + α153x15

Now it is possible to perform the repeated division steps. The number of steps in the division must equal the number of terms in the message polynomial. In this case, the division will take 16 steps to complete. This will result in a remainder that has 18 terms. These terms will be the 18 error correction codewords that are required.

Step 1a: Multiply the Generator Polynomial by the Lead Term of the Message Polynomial

The first step is to multiply the generator polynomial by the lead term of the message polynomial. The lead term in this case is 70x33. Since alpha notation makes it easier to perform the multiplication, it is recommended to convert 70x33 to alpha notation. According to the log antilog table, for the integer value 70, the alpha exponent is 48. Therefore 70 = α48. Multiply the generator polynomial by α48:

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α48x33 + α(263 % 255)x32 + α(282 % 255)x31 + α206x30 + α142x29 + α232x28 + α145x27 + α166x26 + α218x25 + α127x24 + α235x23 + α200x22 + α196x21 + α(300 % 255)x20 + α227x19 + α53x18 + α146x17 + α144x16 + α201x15

The result is:

α48x33 + α8x32 + α27x31 + α206x30 + α142x29 + α232x28 + α145x27 + α166x26 + α218x25 + α127x24 + α235x23 + α200x22 + α196x21 + α45x20 + α227x19 + α53x18 + α146x17 + α144x16 + α201x15

Now, convert this to integer notation:

70x33 + 29x32 + 12x31 + 83x30 + 42x29 + 247x28 + 77x27 + 63x26 + 43x25 + 204x24 + 235x23 + 28x22 + 200x21 + 193x20 + 144x19 + 40x18 + 154x17 + 168x16 + 56x15

Step 1b: XOR the result with the message polynomial

Since this is the first division step, XOR the result from 1a with the message polynomial.

(70 ⊕ 70)x33 + (247 ⊕ 29)x32 + (118 ⊕ 12)x31 + (86 ⊕ 83)x30 + (194 ⊕ 42)x29 + (6 ⊕ 247)x28 + (151 ⊕ 77)x27 + (50 ⊕ 63)x26 + (16 ⊕ 43)x25 + (236 ⊕ 204)x24 + (17 ⊕ 235)x23 + (236 ⊕ 28)x22 + (17 ⊕ 200)x21 + (236 ⊕ 193)x20 + (17 ⊕ 144)x19 + (236 ⊕ 40)x18 + (0 ⊕ 154)x17 + (0 ⊕ 168)x16 + (0 ⊕ 56)x15

The result is:

0x33 + 234x32 + 122x31 + 5x30 + 232x29 + 241x28 + 218x27 + 13x26 + 59x25 + 32x24 + 250x23 + 240x22 + 217x21 + 45x20 + 129x19 + 196x18 + 154x17 + 168x16 + 56x15

Discard the lead 0 term to get:

234x32 + 122x31 + 5x30 + 232x29 + 241x28 + 218x27 + 13x26 + 59x25 + 32x24 + 250x23 + 240x22 + 217x21 + 45x20 + 129x19 + 196x18 + 154x17 + 168x16 + 56x15

Step 2a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 234x32. Convert 234x32 to alpha notation. According to the log antilog table, for the integer value 234, the alpha exponent is 22. Therefore 234 = α22. Multiply the generator polynomial by α22:

22 * α0)x32 + (α22 * α215)x31 + (α22 * α234)x30 + (α22 * α158)x29 + (α22 * α94)x28 + (α22 * α184)x27 + (α22 * α97)x26 + (α22 * α118)x25 + (α22 * α170)x24 + (α22 * α79)x23 + (α22 * α187)x22 + (α22 * α152)x21 + (α22 * α148)x20 + (α22 * α252)x19 + (α22 * α179)x18 + (α22 * α5)x17 + (α22 * α98)x16 + (α22 * α96)x15 + (α22 * α153)x14

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α22x32 + α237x31 + α(256 % 255)x30 + α180x29 + α116x28 + α206x27 + α119x26 + α140x25 + α192x24 + α101x23 + α209x22 + α174x21 + α170x20 + α(274 % 255)x19 + α201x18 + α27x17 + α120x16 + α118x15 + α175x14

The result is:

α22x32 + α237x31 + α1x30 + α180x29 + α116x28 + α206x27 + α119x26 + α140x25 + α192x24 + α101x23 + α209x22 + α174x21 + α170x20 + α19x19 + α201x18 + α27x17 + α120x16 + α118x15 + α175x14

Now, convert this to integer notation:

234x32 + 139x31 + 2x30 + 150x29 + 248x28 + 83x27 + 147x26 + 132x25 + 130x24 + 34x23 + 162x22 + 241x21 + 215x20 + 90x19 + 56x18 + 12x17 + 59x16 + 199x15 + 255x14

Step 2b: XOR the result with the result from step 1b

Use the result from step 1b to perform the next XOR.

(234 ⊕ 234)x32 + (122 ⊕ 139)x31 + (5 ⊕ 2)x30 + (232 ⊕ 150)x29 + (241 ⊕ 248)x28 + (218 ⊕ 83)x27 + (13 ⊕ 147)x26 + (59 ⊕ 132)x25 + (32 ⊕ 130)x24 + (250 ⊕ 34)x23 + (240 ⊕ 162)x22 + (217 ⊕ 241)x21 + (45 ⊕ 215)x20 + (129 ⊕ 90)x19 + (196 ⊕ 56)x18 + (154 ⊕ 12)x17 + (168 ⊕ 59)x16 + (56 ⊕ 199)x15 + (0 ⊕ 255)x14

The result is:

0x32 + 241x31 + 7x30 + 126x29 + 9x28 + 137x27 + 158x26 + 191x25 + 162x24 + 216x23 + 82x22 + 40x21 + 250x20 + 219x19 + 252x18 + 150x17 + 147x16 + 255x15 + 255x14

Discard the lead 0 term to get:

241x31 + 7x30 + 126x29 + 9x28 + 137x27 + 158x26 + 191x25 + 162x24 + 216x23 + 82x22 + 40x21 + 250x20 + 219x19 + 252x18 + 150x17 + 147x16 + 255x15 + 255x14

Step 3a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 241x31. Convert 241x31 to alpha notation. According to the log antilog table, for the integer value 241, the alpha exponent is 174. Therefore 241 = α174. Multiply the generator polynomial by α174:

174 * α0)x31 + (α174 * α215)x30 + (α174 * α234)x29 + (α174 * α158)x28 + (α174 * α94)x27 + (α174 * α184)x26 + (α174 * α97)x25 + (α174 * α118)x24 + (α174 * α170)x23 + (α174 * α79)x22 + (α174 * α187)x21 + (α174 * α152)x20 + (α174 * α148)x19 + (α174 * α252)x18 + (α174 * α179)x17 + (α174 * α5)x16 + (α174 * α98)x15 + (α174 * α96)x14 + (α174 * α153)x13

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α174x31 + α(389 % 255)x30 + α(408 % 255)x29 + α(332 % 255)x28 + α(268 % 255)x27 + α(358 % 255)x26 + α(271 % 255)x25 + α(292 % 255)x24 + α(344 % 255)x23 + α253x22 + α(361 % 255)x21 + α(326 % 255)x20 + α(322 % 255)x19 + α(426 % 255)x18 + α(353 % 255)x17 + α179x16 + α(272 % 255)x15 + α(270 % 255)x14 + α(327 % 255)x13

The result is:

α174x31 + α134x30 + α153x29 + α77x28 + α13x27 + α103x26 + α16x25 + α37x24 + α89x23 + α253x22 + α106x21 + α71x20 + α67x19 + α171x18 + α98x17 + α179x16 + α17x15 + α15x14 + α72x13

Now, convert this to integer notation:

241x31 + 218x30 + 146x29 + 60x28 + 135x27 + 136x26 + 76x25 + 74x24 + 225x23 + 71x22 + 52x21 + 188x20 + 194x19 + 179x18 + 67x17 + 75x16 + 152x15 + 38x14 + 101x13

Step 3b: XOR the result with the result from step 2b

Use the result from step 2b to perform the next XOR.

(241 ⊕ 241)x31 + (7 ⊕ 218)x30 + (126 ⊕ 146)x29 + (9 ⊕ 60)x28 + (137 ⊕ 135)x27 + (158 ⊕ 136)x26 + (191 ⊕ 76)x25 + (162 ⊕ 74)x24 + (216 ⊕ 225)x23 + (82 ⊕ 71)x22 + (40 ⊕ 52)x21 + (250 ⊕ 188)x20 + (219 ⊕ 194)x19 + (252 ⊕ 179)x18 + (150 ⊕ 67)x17 + (147 ⊕ 75)x16 + (255 ⊕ 152)x15 + (255 ⊕ 38)x14 + (0 ⊕ 101)x13

The result is:

0x31 + 221x30 + 236x29 + 53x28 + 14x27 + 22x26 + 243x25 + 232x24 + 57x23 + 21x22 + 28x21 + 70x20 + 25x19 + 79x18 + 213x17 + 216x16 + 103x15 + 217x14 + 101x13

Discard the lead 0 term to get:

221x30 + 236x29 + 53x28 + 14x27 + 22x26 + 243x25 + 232x24 + 57x23 + 21x22 + 28x21 + 70x20 + 25x19 + 79x18 + 213x17 + 216x16 + 103x15 + 217x14 + 101x13

Step 4a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 221x30. Convert 221x30 to alpha notation. According to the log antilog table, for the integer value 221, the alpha exponent is 204. Therefore 221 = α204. Multiply the generator polynomial by α204:

204 * α0)x30 + (α204 * α215)x29 + (α204 * α234)x28 + (α204 * α158)x27 + (α204 * α94)x26 + (α204 * α184)x25 + (α204 * α97)x24 + (α204 * α118)x23 + (α204 * α170)x22 + (α204 * α79)x21 + (α204 * α187)x20 + (α204 * α152)x19 + (α204 * α148)x18 + (α204 * α252)x17 + (α204 * α179)x16 + (α204 * α5)x15 + (α204 * α98)x14 + (α204 * α96)x13 + (α204 * α153)x12

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α204x30 + α(419 % 255)x29 + α(438 % 255)x28 + α(362 % 255)x27 + α(298 % 255)x26 + α(388 % 255)x25 + α(301 % 255)x24 + α(322 % 255)x23 + α(374 % 255)x22 + α(283 % 255)x21 + α(391 % 255)x20 + α(356 % 255)x19 + α(352 % 255)x18 + α(456 % 255)x17 + α(383 % 255)x16 + α209x15 + α(302 % 255)x14 + α(300 % 255)x13 + α(357 % 255)x12

The result is:

α204x30 + α164x29 + α183x28 + α107x27 + α43x26 + α133x25 + α46x24 + α67x23 + α119x22 + α28x21 + α136x20 + α101x19 + α97x18 + α201x17 + α128x16 + α209x15 + α47x14 + α45x13 + α102x12

Now, convert this to integer notation:

221x30 + 198x29 + 196x28 + 104x27 + 119x26 + 109x25 + 159x24 + 194x23 + 147x22 + 24x21 + 79x20 + 34x19 + 175x18 + 56x17 + 133x16 + 162x15 + 35x14 + 193x13 + 68x12

Step 4b: XOR the result with the result from step 3b

Use the result from step 3b to perform the next XOR.

(221 ⊕ 221)x30 + (236 ⊕ 198)x29 + (53 ⊕ 196)x28 + (14 ⊕ 104)x27 + (22 ⊕ 119)x26 + (243 ⊕ 109)x25 + (232 ⊕ 159)x24 + (57 ⊕ 194)x23 + (21 ⊕ 147)x22 + (28 ⊕ 24)x21 + (70 ⊕ 79)x20 + (25 ⊕ 34)x19 + (79 ⊕ 175)x18 + (213 ⊕ 56)x17 + (216 ⊕ 133)x16 + (103 ⊕ 162)x15 + (217 ⊕ 35)x14 + (101 ⊕ 193)x13 + (0 ⊕ 68)x12

The result is:

0x30 + 42x29 + 241x28 + 102x27 + 97x26 + 158x25 + 119x24 + 251x23 + 134x22 + 4x21 + 9x20 + 59x19 + 224x18 + 237x17 + 93x16 + 197x15 + 250x14 + 164x13 + 68x12

Discard the lead 0 term to get:

42x29 + 241x28 + 102x27 + 97x26 + 158x25 + 119x24 + 251x23 + 134x22 + 4x21 + 9x20 + 59x19 + 224x18 + 237x17 + 93x16 + 197x15 + 250x14 + 164x13 + 68x12

Step 5a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 42x29. Convert 42x29 to alpha notation. According to the log antilog table, for the integer value 42, the alpha exponent is 142. Therefore 42 = α142. Multiply the generator polynomial by α142:

142 * α0)x29 + (α142 * α215)x28 + (α142 * α234)x27 + (α142 * α158)x26 + (α142 * α94)x25 + (α142 * α184)x24 + (α142 * α97)x23 + (α142 * α118)x22 + (α142 * α170)x21 + (α142 * α79)x20 + (α142 * α187)x19 + (α142 * α152)x18 + (α142 * α148)x17 + (α142 * α252)x16 + (α142 * α179)x15 + (α142 * α5)x14 + (α142 * α98)x13 + (α142 * α96)x12 + (α142 * α153)x11

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α142x29 + α(357 % 255)x28 + α(376 % 255)x27 + α(300 % 255)x26 + α236x25 + α(326 % 255)x24 + α239x23 + α(260 % 255)x22 + α(312 % 255)x21 + α221x20 + α(329 % 255)x19 + α(294 % 255)x18 + α(290 % 255)x17 + α(394 % 255)x16 + α(321 % 255)x15 + α147x14 + α240x13 + α238x12 + α(295 % 255)x11

The result is:

α142x29 + α102x28 + α121x27 + α45x26 + α236x25 + α71x24 + α239x23 + α5x22 + α57x21 + α221x20 + α74x19 + α39x18 + α35x17 + α139x16 + α66x15 + α147x14 + α240x13 + α238x12 + α40x11

Now, convert this to integer notation:

42x29 + 68x28 + 118x27 + 193x26 + 203x25 + 188x24 + 22x23 + 32x22 + 186x21 + 69x20 + 137x19 + 53x18 + 156x17 + 66x16 + 97x15 + 41x14 + 44x13 + 11x12 + 106x11

Step 5b: XOR the result with the result from step 4b

Use the result from step 4b to perform the next XOR.

(42 ⊕ 42)x29 + (241 ⊕ 68)x28 + (102 ⊕ 118)x27 + (97 ⊕ 193)x26 + (158 ⊕ 203)x25 + (119 ⊕ 188)x24 + (251 ⊕ 22)x23 + (134 ⊕ 32)x22 + (4 ⊕ 186)x21 + (9 ⊕ 69)x20 + (59 ⊕ 137)x19 + (224 ⊕ 53)x18 + (237 ⊕ 156)x17 + (93 ⊕ 66)x16 + (197 ⊕ 97)x15 + (250 ⊕ 41)x14 + (164 ⊕ 44)x13 + (68 ⊕ 11)x12 + (0 ⊕ 106)x11

The result is:

0x29 + 181x28 + 16x27 + 160x26 + 85x25 + 203x24 + 237x23 + 166x22 + 190x21 + 76x20 + 178x19 + 213x18 + 113x17 + 31x16 + 164x15 + 211x14 + 136x13 + 79x12 + 106x11

Discard the lead 0 term to get:

181x28 + 16x27 + 160x26 + 85x25 + 203x24 + 237x23 + 166x22 + 190x21 + 76x20 + 178x19 + 213x18 + 113x17 + 31x16 + 164x15 + 211x14 + 136x13 + 79x12 + 106x11

Step 6a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 181x28. Convert 181x28 to alpha notation. According to the log antilog table, for the integer value 181, the alpha exponent is 42. Therefore 181 = α42. Multiply the generator polynomial by α42:

42 * α0)x28 + (α42 * α215)x27 + (α42 * α234)x26 + (α42 * α158)x25 + (α42 * α94)x24 + (α42 * α184)x23 + (α42 * α97)x22 + (α42 * α118)x21 + (α42 * α170)x20 + (α42 * α79)x19 + (α42 * α187)x18 + (α42 * α152)x17 + (α42 * α148)x16 + (α42 * α252)x15 + (α42 * α179)x14 + (α42 * α5)x13 + (α42 * α98)x12 + (α42 * α96)x11 + (α42 * α153)x10

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α42x28 + α(257 % 255)x27 + α(276 % 255)x26 + α200x25 + α136x24 + α226x23 + α139x22 + α160x21 + α212x20 + α121x19 + α229x18 + α194x17 + α190x16 + α(294 % 255)x15 + α221x14 + α47x13 + α140x12 + α138x11 + α195x10

The result is:

α42x28 + α2x27 + α21x26 + α200x25 + α136x24 + α226x23 + α139x22 + α160x21 + α212x20 + α121x19 + α229x18 + α194x17 + α190x16 + α39x15 + α221x14 + α47x13 + α140x12 + α138x11 + α195x10

Now, convert this to integer notation:

181x28 + 4x27 + 117x26 + 28x25 + 79x24 + 72x23 + 66x22 + 230x21 + 121x20 + 118x19 + 122x18 + 50x17 + 174x16 + 53x15 + 69x14 + 35x13 + 132x12 + 33x11 + 100x10

Step 6b: XOR the result with the result from step 5b

Use the result from step 5b to perform the next XOR.

(181 ⊕ 181)x28 + (16 ⊕ 4)x27 + (160 ⊕ 117)x26 + (85 ⊕ 28)x25 + (203 ⊕ 79)x24 + (237 ⊕ 72)x23 + (166 ⊕ 66)x22 + (190 ⊕ 230)x21 + (76 ⊕ 121)x20 + (178 ⊕ 118)x19 + (213 ⊕ 122)x18 + (113 ⊕ 50)x17 + (31 ⊕ 174)x16 + (164 ⊕ 53)x15 + (211 ⊕ 69)x14 + (136 ⊕ 35)x13 + (79 ⊕ 132)x12 + (106 ⊕ 33)x11 + (0 ⊕ 100)x10

The result is:

0x28 + 20x27 + 213x26 + 73x25 + 132x24 + 165x23 + 228x22 + 88x21 + 53x20 + 196x19 + 175x18 + 67x17 + 177x16 + 145x15 + 150x14 + 171x13 + 203x12 + 75x11 + 100x10

Discard the lead 0 term to get:

20x27 + 213x26 + 73x25 + 132x24 + 165x23 + 228x22 + 88x21 + 53x20 + 196x19 + 175x18 + 67x17 + 177x16 + 145x15 + 150x14 + 171x13 + 203x12 + 75x11 + 100x10

Step 7a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 20x27. Convert 20x27 to alpha notation. According to the log antilog table, for the integer value 20, the alpha exponent is 52. Therefore 20 = α52. Multiply the generator polynomial by α52:

52 * α0)x27 + (α52 * α215)x26 + (α52 * α234)x25 + (α52 * α158)x24 + (α52 * α94)x23 + (α52 * α184)x22 + (α52 * α97)x21 + (α52 * α118)x20 + (α52 * α170)x19 + (α52 * α79)x18 + (α52 * α187)x17 + (α52 * α152)x16 + (α52 * α148)x15 + (α52 * α252)x14 + (α52 * α179)x13 + (α52 * α5)x12 + (α52 * α98)x11 + (α52 * α96)x10 + (α52 * α153)x9

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α52x27 + α(267 % 255)x26 + α(286 % 255)x25 + α210x24 + α146x23 + α236x22 + α149x21 + α170x20 + α222x19 + α131x18 + α239x17 + α204x16 + α200x15 + α(304 % 255)x14 + α231x13 + α57x12 + α150x11 + α148x10 + α205x9

The result is:

α52x27 + α12x26 + α31x25 + α210x24 + α146x23 + α236x22 + α149x21 + α170x20 + α222x19 + α131x18 + α239x17 + α204x16 + α200x15 + α49x14 + α231x13 + α57x12 + α150x11 + α148x10 + α205x9

Now, convert this to integer notation:

20x27 + 205x26 + 192x25 + 89x24 + 154x23 + 203x22 + 164x21 + 215x20 + 138x19 + 92x18 + 22x17 + 221x16 + 28x15 + 140x14 + 245x13 + 186x12 + 85x11 + 82x10 + 167x9

Step 7b: XOR the result with the result from step 6b

Use the result from step 6b to perform the next XOR.

(20 ⊕ 20)x27 + (213 ⊕ 205)x26 + (73 ⊕ 192)x25 + (132 ⊕ 89)x24 + (165 ⊕ 154)x23 + (228 ⊕ 203)x22 + (88 ⊕ 164)x21 + (53 ⊕ 215)x20 + (196 ⊕ 138)x19 + (175 ⊕ 92)x18 + (67 ⊕ 22)x17 + (177 ⊕ 221)x16 + (145 ⊕ 28)x15 + (150 ⊕ 140)x14 + (171 ⊕ 245)x13 + (203 ⊕ 186)x12 + (75 ⊕ 85)x11 + (100 ⊕ 82)x10 + (0 ⊕ 167)x9

The result is:

0x27 + 24x26 + 137x25 + 221x24 + 63x23 + 47x22 + 252x21 + 226x20 + 78x19 + 243x18 + 85x17 + 108x16 + 141x15 + 26x14 + 94x13 + 113x12 + 30x11 + 54x10 + 167x9

Discard the lead 0 term to get:

24x26 + 137x25 + 221x24 + 63x23 + 47x22 + 252x21 + 226x20 + 78x19 + 243x18 + 85x17 + 108x16 + 141x15 + 26x14 + 94x13 + 113x12 + 30x11 + 54x10 + 167x9

Step 8a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 24x26. Convert 24x26 to alpha notation. According to the log antilog table, for the integer value 24, the alpha exponent is 28. Therefore 24 = α28. Multiply the generator polynomial by α28:

28 * α0)x26 + (α28 * α215)x25 + (α28 * α234)x24 + (α28 * α158)x23 + (α28 * α94)x22 + (α28 * α184)x21 + (α28 * α97)x20 + (α28 * α118)x19 + (α28 * α170)x18 + (α28 * α79)x17 + (α28 * α187)x16 + (α28 * α152)x15 + (α28 * α148)x14 + (α28 * α252)x13 + (α28 * α179)x12 + (α28 * α5)x11 + (α28 * α98)x10 + (α28 * α96)x9 + (α28 * α153)x8

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α28x26 + α243x25 + α(262 % 255)x24 + α186x23 + α122x22 + α212x21 + α125x20 + α146x19 + α198x18 + α107x17 + α215x16 + α180x15 + α176x14 + α(280 % 255)x13 + α207x12 + α33x11 + α126x10 + α124x9 + α181x8

The result is:

α28x26 + α243x25 + α7x24 + α186x23 + α122x22 + α212x21 + α125x20 + α146x19 + α198x18 + α107x17 + α215x16 + α180x15 + α176x14 + α25x13 + α207x12 + α33x11 + α126x10 + α124x9 + α181x8

Now, convert this to integer notation:

24x26 + 125x25 + 128x24 + 110x23 + 236x22 + 121x21 + 51x20 + 154x19 + 7x18 + 104x17 + 239x16 + 150x15 + 227x14 + 3x13 + 166x12 + 39x11 + 102x10 + 151x9 + 49x8

Step 8b: XOR the result with the result from step 7b

Use the result from step 7b to perform the next XOR.

(24 ⊕ 24)x26 + (137 ⊕ 125)x25 + (221 ⊕ 128)x24 + (63 ⊕ 110)x23 + (47 ⊕ 236)x22 + (252 ⊕ 121)x21 + (226 ⊕ 51)x20 + (78 ⊕ 154)x19 + (243 ⊕ 7)x18 + (85 ⊕ 104)x17 + (108 ⊕ 239)x16 + (141 ⊕ 150)x15 + (26 ⊕ 227)x14 + (94 ⊕ 3)x13 + (113 ⊕ 166)x12 + (30 ⊕ 39)x11 + (54 ⊕ 102)x10 + (167 ⊕ 151)x9 + (0 ⊕ 49)x8

The result is:

0x26 + 244x25 + 93x24 + 81x23 + 195x22 + 133x21 + 209x20 + 212x19 + 244x18 + 61x17 + 131x16 + 27x15 + 249x14 + 93x13 + 215x12 + 57x11 + 80x10 + 48x9 + 49x8

Discard the lead 0 term to get:

244x25 + 93x24 + 81x23 + 195x22 + 133x21 + 209x20 + 212x19 + 244x18 + 61x17 + 131x16 + 27x15 + 249x14 + 93x13 + 215x12 + 57x11 + 80x10 + 48x9 + 49x8

Step 9a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 244x25. Convert 244x25 to alpha notation. According to the log antilog table, for the integer value 244, the alpha exponent is 230. Therefore 244 = α230. Multiply the generator polynomial by α230:

230 * α0)x25 + (α230 * α215)x24 + (α230 * α234)x23 + (α230 * α158)x22 + (α230 * α94)x21 + (α230 * α184)x20 + (α230 * α97)x19 + (α230 * α118)x18 + (α230 * α170)x17 + (α230 * α79)x16 + (α230 * α187)x15 + (α230 * α152)x14 + (α230 * α148)x13 + (α230 * α252)x12 + (α230 * α179)x11 + (α230 * α5)x10 + (α230 * α98)x9 + (α230 * α96)x8 + (α230 * α153)x7

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α230x25 + α(445 % 255)x24 + α(464 % 255)x23 + α(388 % 255)x22 + α(324 % 255)x21 + α(414 % 255)x20 + α(327 % 255)x19 + α(348 % 255)x18 + α(400 % 255)x17 + α(309 % 255)x16 + α(417 % 255)x15 + α(382 % 255)x14 + α(378 % 255)x13 + α(482 % 255)x12 + α(409 % 255)x11 + α235x10 + α(328 % 255)x9 + α(326 % 255)x8 + α(383 % 255)x7

The result is:

α230x25 + α190x24 + α209x23 + α133x22 + α69x21 + α159x20 + α72x19 + α93x18 + α145x17 + α54x16 + α162x15 + α127x14 + α123x13 + α227x12 + α154x11 + α235x10 + α73x9 + α71x8 + α128x7

Now, convert this to integer notation:

244x25 + 174x24 + 162x23 + 109x22 + 47x21 + 115x20 + 101x19 + 182x18 + 77x17 + 80x16 + 191x15 + 204x14 + 197x13 + 144x12 + 57x11 + 235x10 + 202x9 + 188x8 + 133x7

Step 9b: XOR the result with the result from step 8b

Use the result from step 8b to perform the next XOR.

(244 ⊕ 244)x25 + (93 ⊕ 174)x24 + (81 ⊕ 162)x23 + (195 ⊕ 109)x22 + (133 ⊕ 47)x21 + (209 ⊕ 115)x20 + (212 ⊕ 101)x19 + (244 ⊕ 182)x18 + (61 ⊕ 77)x17 + (131 ⊕ 80)x16 + (27 ⊕ 191)x15 + (249 ⊕ 204)x14 + (93 ⊕ 197)x13 + (215 ⊕ 144)x12 + (57 ⊕ 57)x11 + (80 ⊕ 235)x10 + (48 ⊕ 202)x9 + (49 ⊕ 188)x8 + (0 ⊕ 133)x7

The result is:

0x25 + 243x24 + 243x23 + 174x22 + 170x21 + 162x20 + 177x19 + 66x18 + 112x17 + 211x16 + 164x15 + 53x14 + 152x13 + 71x12 + 0x11 + 187x10 + 250x9 + 141x8 + 133x7

Discard the lead 0 term to get:

243x24 + 243x23 + 174x22 + 170x21 + 162x20 + 177x19 + 66x18 + 112x17 + 211x16 + 164x15 + 53x14 + 152x13 + 71x12 + 0x11 + 187x10 + 250x9 + 141x8 + 133x7

Step 10a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 243x24. Convert 243x24 to alpha notation. According to the log antilog table, for the integer value 243, the alpha exponent is 233. Therefore 243 = α233. Multiply the generator polynomial by α233:

233 * α0)x24 + (α233 * α215)x23 + (α233 * α234)x22 + (α233 * α158)x21 + (α233 * α94)x20 + (α233 * α184)x19 + (α233 * α97)x18 + (α233 * α118)x17 + (α233 * α170)x16 + (α233 * α79)x15 + (α233 * α187)x14 + (α233 * α152)x13 + (α233 * α148)x12 + (α233 * α252)x11 + (α233 * α179)x10 + (α233 * α5)x9 + (α233 * α98)x8 + (α233 * α96)x7 + (α233 * α153)x6

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α233x24 + α(448 % 255)x23 + α(467 % 255)x22 + α(391 % 255)x21 + α(327 % 255)x20 + α(417 % 255)x19 + α(330 % 255)x18 + α(351 % 255)x17 + α(403 % 255)x16 + α(312 % 255)x15 + α(420 % 255)x14 + α(385 % 255)x13 + α(381 % 255)x12 + α(485 % 255)x11 + α(412 % 255)x10 + α238x9 + α(331 % 255)x8 + α(329 % 255)x7 + α(386 % 255)x6

The result is:

α233x24 + α193x23 + α212x22 + α136x21 + α72x20 + α162x19 + α75x18 + α96x17 + α148x16 + α57x15 + α165x14 + α130x13 + α126x12 + α230x11 + α157x10 + α238x9 + α76x8 + α74x7 + α131x6

Now, convert this to integer notation:

243x24 + 25x23 + 121x22 + 79x21 + 101x20 + 191x19 + 15x18 + 217x17 + 82x16 + 186x15 + 145x14 + 46x13 + 102x12 + 244x11 + 213x10 + 11x9 + 30x8 + 137x7 + 92x6

Step 10b: XOR the result with the result from step 9b

Use the result from step 9b to perform the next XOR.

(243 ⊕ 243)x24 + (243 ⊕ 25)x23 + (174 ⊕ 121)x22 + (170 ⊕ 79)x21 + (162 ⊕ 101)x20 + (177 ⊕ 191)x19 + (66 ⊕ 15)x18 + (112 ⊕ 217)x17 + (211 ⊕ 82)x16 + (164 ⊕ 186)x15 + (53 ⊕ 145)x14 + (152 ⊕ 46)x13 + (71 ⊕ 102)x12 + (0 ⊕ 244)x11 + (187 ⊕ 213)x10 + (250 ⊕ 11)x9 + (141 ⊕ 30)x8 + (133 ⊕ 137)x7 + (0 ⊕ 92)x6

The result is:

0x24 + 234x23 + 215x22 + 229x21 + 199x20 + 14x19 + 77x18 + 169x17 + 129x16 + 30x15 + 164x14 + 182x13 + 33x12 + 244x11 + 110x10 + 241x9 + 147x8 + 12x7 + 92x6

Discard the lead 0 term to get:

234x23 + 215x22 + 229x21 + 199x20 + 14x19 + 77x18 + 169x17 + 129x16 + 30x15 + 164x14 + 182x13 + 33x12 + 244x11 + 110x10 + 241x9 + 147x8 + 12x7 + 92x6

Step 11a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 234x23. Convert 234x23 to alpha notation. According to the log antilog table, for the integer value 234, the alpha exponent is 22. Therefore 234 = α22. Multiply the generator polynomial by α22:

22 * α0)x23 + (α22 * α215)x22 + (α22 * α234)x21 + (α22 * α158)x20 + (α22 * α94)x19 + (α22 * α184)x18 + (α22 * α97)x17 + (α22 * α118)x16 + (α22 * α170)x15 + (α22 * α79)x14 + (α22 * α187)x13 + (α22 * α152)x12 + (α22 * α148)x11 + (α22 * α252)x10 + (α22 * α179)x9 + (α22 * α5)x8 + (α22 * α98)x7 + (α22 * α96)x6 + (α22 * α153)x5

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α22x23 + α237x22 + α(256 % 255)x21 + α180x20 + α116x19 + α206x18 + α119x17 + α140x16 + α192x15 + α101x14 + α209x13 + α174x12 + α170x11 + α(274 % 255)x10 + α201x9 + α27x8 + α120x7 + α118x6 + α175x5

The result is:

α22x23 + α237x22 + α1x21 + α180x20 + α116x19 + α206x18 + α119x17 + α140x16 + α192x15 + α101x14 + α209x13 + α174x12 + α170x11 + α19x10 + α201x9 + α27x8 + α120x7 + α118x6 + α175x5

Now, convert this to integer notation:

234x23 + 139x22 + 2x21 + 150x20 + 248x19 + 83x18 + 147x17 + 132x16 + 130x15 + 34x14 + 162x13 + 241x12 + 215x11 + 90x10 + 56x9 + 12x8 + 59x7 + 199x6 + 255x5

Step 11b: XOR the result with the result from step 10b

Use the result from step 10b to perform the next XOR.

(234 ⊕ 234)x23 + (215 ⊕ 139)x22 + (229 ⊕ 2)x21 + (199 ⊕ 150)x20 + (14 ⊕ 248)x19 + (77 ⊕ 83)x18 + (169 ⊕ 147)x17 + (129 ⊕ 132)x16 + (30 ⊕ 130)x15 + (164 ⊕ 34)x14 + (182 ⊕ 162)x13 + (33 ⊕ 241)x12 + (244 ⊕ 215)x11 + (110 ⊕ 90)x10 + (241 ⊕ 56)x9 + (147 ⊕ 12)x8 + (12 ⊕ 59)x7 + (92 ⊕ 199)x6 + (0 ⊕ 255)x5

The result is:

0x23 + 92x22 + 231x21 + 81x20 + 246x19 + 30x18 + 58x17 + 5x16 + 156x15 + 134x14 + 20x13 + 208x12 + 35x11 + 52x10 + 201x9 + 159x8 + 55x7 + 155x6 + 255x5

Discard the lead 0 term to get:

92x22 + 231x21 + 81x20 + 246x19 + 30x18 + 58x17 + 5x16 + 156x15 + 134x14 + 20x13 + 208x12 + 35x11 + 52x10 + 201x9 + 159x8 + 55x7 + 155x6 + 255x5

Step 12a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 92x22. Convert 92x22 to alpha notation. According to the log antilog table, for the integer value 92, the alpha exponent is 131. Therefore 92 = α131. Multiply the generator polynomial by α131:

131 * α0)x22 + (α131 * α215)x21 + (α131 * α234)x20 + (α131 * α158)x19 + (α131 * α94)x18 + (α131 * α184)x17 + (α131 * α97)x16 + (α131 * α118)x15 + (α131 * α170)x14 + (α131 * α79)x13 + (α131 * α187)x12 + (α131 * α152)x11 + (α131 * α148)x10 + (α131 * α252)x9 + (α131 * α179)x8 + (α131 * α5)x7 + (α131 * α98)x6 + (α131 * α96)x5 + (α131 * α153)x4

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α131x22 + α(346 % 255)x21 + α(365 % 255)x20 + α(289 % 255)x19 + α225x18 + α(315 % 255)x17 + α228x16 + α249x15 + α(301 % 255)x14 + α210x13 + α(318 % 255)x12 + α(283 % 255)x11 + α(279 % 255)x10 + α(383 % 255)x9 + α(310 % 255)x8 + α136x7 + α229x6 + α227x5 + α(284 % 255)x4

The result is:

α131x22 + α91x21 + α110x20 + α34x19 + α225x18 + α60x17 + α228x16 + α249x15 + α46x14 + α210x13 + α63x12 + α28x11 + α24x10 + α128x9 + α55x8 + α136x7 + α229x6 + α227x5 + α29x4

Now, convert this to integer notation:

92x22 + 163x21 + 103x20 + 78x19 + 36x18 + 185x17 + 61x16 + 54x15 + 159x14 + 89x13 + 161x12 + 24x11 + 143x10 + 133x9 + 160x8 + 79x7 + 122x6 + 144x5 + 48x4

Step 12b: XOR the result with the result from step 11b

Use the result from step 11b to perform the next XOR.

(92 ⊕ 92)x22 + (231 ⊕ 163)x21 + (81 ⊕ 103)x20 + (246 ⊕ 78)x19 + (30 ⊕ 36)x18 + (58 ⊕ 185)x17 + (5 ⊕ 61)x16 + (156 ⊕ 54)x15 + (134 ⊕ 159)x14 + (20 ⊕ 89)x13 + (208 ⊕ 161)x12 + (35 ⊕ 24)x11 + (52 ⊕ 143)x10 + (201 ⊕ 133)x9 + (159 ⊕ 160)x8 + (55 ⊕ 79)x7 + (155 ⊕ 122)x6 + (255 ⊕ 144)x5 + (0 ⊕ 48)x4

The result is:

0x22 + 68x21 + 54x20 + 184x19 + 58x18 + 131x17 + 56x16 + 170x15 + 25x14 + 77x13 + 113x12 + 59x11 + 187x10 + 76x9 + 63x8 + 120x7 + 225x6 + 111x5 + 48x4

Discard the lead 0 term to get:

68x21 + 54x20 + 184x19 + 58x18 + 131x17 + 56x16 + 170x15 + 25x14 + 77x13 + 113x12 + 59x11 + 187x10 + 76x9 + 63x8 + 120x7 + 225x6 + 111x5 + 48x4

Step 13a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 68x21. Convert 68x21 to alpha notation. According to the log antilog table, for the integer value 68, the alpha exponent is 102. Therefore 68 = α102. Multiply the generator polynomial by α102:

102 * α0)x21 + (α102 * α215)x20 + (α102 * α234)x19 + (α102 * α158)x18 + (α102 * α94)x17 + (α102 * α184)x16 + (α102 * α97)x15 + (α102 * α118)x14 + (α102 * α170)x13 + (α102 * α79)x12 + (α102 * α187)x11 + (α102 * α152)x10 + (α102 * α148)x9 + (α102 * α252)x8 + (α102 * α179)x7 + (α102 * α5)x6 + (α102 * α98)x5 + (α102 * α96)x4 + (α102 * α153)x3

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α102x21 + α(317 % 255)x20 + α(336 % 255)x19 + α(260 % 255)x18 + α196x17 + α(286 % 255)x16 + α199x15 + α220x14 + α(272 % 255)x13 + α181x12 + α(289 % 255)x11 + α254x10 + α250x9 + α(354 % 255)x8 + α(281 % 255)x7 + α107x6 + α200x5 + α198x4 + α255x3

The result is:

α102x21 + α62x20 + α81x19 + α5x18 + α196x17 + α31x16 + α199x15 + α220x14 + α17x13 + α181x12 + α34x11 + α254x10 + α250x9 + α99x8 + α26x7 + α107x6 + α200x5 + α198x4 + α0x3

Now, convert this to integer notation:

68x21 + 222x20 + 231x19 + 32x18 + 200x17 + 192x16 + 14x15 + 172x14 + 152x13 + 49x12 + 78x11 + 142x10 + 108x9 + 134x8 + 6x7 + 104x6 + 28x5 + 7x4 + 1x3

Step 13b: XOR the result with the result from step 12b

Use the result from step 12b to perform the next XOR.

(68 ⊕ 68)x21 + (54 ⊕ 222)x20 + (184 ⊕ 231)x19 + (58 ⊕ 32)x18 + (131 ⊕ 200)x17 + (56 ⊕ 192)x16 + (170 ⊕ 14)x15 + (25 ⊕ 172)x14 + (77 ⊕ 152)x13 + (113 ⊕ 49)x12 + (59 ⊕ 78)x11 + (187 ⊕ 142)x10 + (76 ⊕ 108)x9 + (63 ⊕ 134)x8 + (120 ⊕ 6)x7 + (225 ⊕ 104)x6 + (111 ⊕ 28)x5 + (48 ⊕ 7)x4 + (0 ⊕ 1)x3

The result is:

0x21 + 232x20 + 95x19 + 26x18 + 75x17 + 248x16 + 164x15 + 181x14 + 213x13 + 64x12 + 117x11 + 53x10 + 32x9 + 185x8 + 126x7 + 137x6 + 115x5 + 55x4 + 1x3

Discard the lead 0 term to get:

232x20 + 95x19 + 26x18 + 75x17 + 248x16 + 164x15 + 181x14 + 213x13 + 64x12 + 117x11 + 53x10 + 32x9 + 185x8 + 126x7 + 137x6 + 115x5 + 55x4 + 1x3

Step 14a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 232x20. Convert 232x20 to alpha notation. According to the log antilog table, for the integer value 232, the alpha exponent is 11. Therefore 232 = α11. Multiply the generator polynomial by α11:

11 * α0)x20 + (α11 * α215)x19 + (α11 * α234)x18 + (α11 * α158)x17 + (α11 * α94)x16 + (α11 * α184)x15 + (α11 * α97)x14 + (α11 * α118)x13 + (α11 * α170)x12 + (α11 * α79)x11 + (α11 * α187)x10 + (α11 * α152)x9 + (α11 * α148)x8 + (α11 * α252)x7 + (α11 * α179)x6 + (α11 * α5)x5 + (α11 * α98)x4 + (α11 * α96)x3 + (α11 * α153)x2

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α11x20 + α226x19 + α245x18 + α169x17 + α105x16 + α195x15 + α108x14 + α129x13 + α181x12 + α90x11 + α198x10 + α163x9 + α159x8 + α(263 % 255)x7 + α190x6 + α16x5 + α109x4 + α107x3 + α164x2

The result is:

α11x20 + α226x19 + α245x18 + α169x17 + α105x16 + α195x15 + α108x14 + α129x13 + α181x12 + α90x11 + α198x10 + α163x9 + α159x8 + α8x7 + α190x6 + α16x5 + α109x4 + α107x3 + α164x2

Now, convert this to integer notation:

232x20 + 72x19 + 233x18 + 229x17 + 26x16 + 100x15 + 208x14 + 23x13 + 49x12 + 223x11 + 7x10 + 99x9 + 115x8 + 29x7 + 174x6 + 76x5 + 189x4 + 104x3 + 198x2

Step 14b: XOR the result with the result from step 13b

Use the result from step 13b to perform the next XOR.

(232 ⊕ 232)x20 + (95 ⊕ 72)x19 + (26 ⊕ 233)x18 + (75 ⊕ 229)x17 + (248 ⊕ 26)x16 + (164 ⊕ 100)x15 + (181 ⊕ 208)x14 + (213 ⊕ 23)x13 + (64 ⊕ 49)x12 + (117 ⊕ 223)x11 + (53 ⊕ 7)x10 + (32 ⊕ 99)x9 + (185 ⊕ 115)x8 + (126 ⊕ 29)x7 + (137 ⊕ 174)x6 + (115 ⊕ 76)x5 + (55 ⊕ 189)x4 + (1 ⊕ 104)x3 + (0 ⊕ 198)x2

The result is:

0x20 + 23x19 + 243x18 + 174x17 + 226x16 + 192x15 + 101x14 + 194x13 + 113x12 + 170x11 + 50x10 + 67x9 + 202x8 + 99x7 + 39x6 + 63x5 + 138x4 + 105x3 + 198x2

Discard the lead 0 term to get:

23x19 + 243x18 + 174x17 + 226x16 + 192x15 + 101x14 + 194x13 + 113x12 + 170x11 + 50x10 + 67x9 + 202x8 + 99x7 + 39x6 + 63x5 + 138x4 + 105x3 + 198x2

Step 15a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 23x19. Convert 23x19 to alpha notation. According to the log antilog table, for the integer value 23, the alpha exponent is 129. Therefore 23 = α129. Multiply the generator polynomial by α129:

129 * α0)x19 + (α129 * α215)x18 + (α129 * α234)x17 + (α129 * α158)x16 + (α129 * α94)x15 + (α129 * α184)x14 + (α129 * α97)x13 + (α129 * α118)x12 + (α129 * α170)x11 + (α129 * α79)x10 + (α129 * α187)x9 + (α129 * α152)x8 + (α129 * α148)x7 + (α129 * α252)x6 + (α129 * α179)x5 + (α129 * α5)x4 + (α129 * α98)x3 + (α129 * α96)x2 + (α129 * α153)x1

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α129x19 + α(344 % 255)x18 + α(363 % 255)x17 + α(287 % 255)x16 + α223x15 + α(313 % 255)x14 + α226x13 + α247x12 + α(299 % 255)x11 + α208x10 + α(316 % 255)x9 + α(281 % 255)x8 + α(277 % 255)x7 + α(381 % 255)x6 + α(308 % 255)x5 + α134x4 + α227x3 + α225x2 + α(282 % 255)x1

The result is:

α129x19 + α89x18 + α108x17 + α32x16 + α223x15 + α58x14 + α226x13 + α247x12 + α44x11 + α208x10 + α61x9 + α26x8 + α22x7 + α126x6 + α53x5 + α134x4 + α227x3 + α225x2 + α27x1

Now, convert this to integer notation:

23x19 + 225x18 + 208x17 + 157x16 + 9x15 + 105x14 + 72x13 + 131x12 + 238x11 + 81x10 + 111x9 + 6x8 + 234x7 + 102x6 + 40x5 + 218x4 + 144x3 + 36x2 + 12x1

Step 15b: XOR the result with the result from step 14b

Use the result from step 14b to perform the next XOR.

(23 ⊕ 23)x19 + (243 ⊕ 225)x18 + (174 ⊕ 208)x17 + (226 ⊕ 157)x16 + (192 ⊕ 9)x15 + (101 ⊕ 105)x14 + (194 ⊕ 72)x13 + (113 ⊕ 131)x12 + (170 ⊕ 238)x11 + (50 ⊕ 81)x10 + (67 ⊕ 111)x9 + (202 ⊕ 6)x8 + (99 ⊕ 234)x7 + (39 ⊕ 102)x6 + (63 ⊕ 40)x5 + (138 ⊕ 218)x4 + (105 ⊕ 144)x3 + (198 ⊕ 36)x2 + (0 ⊕ 12)x1

The result is:

0x19 + 18x18 + 126x17 + 127x16 + 201x15 + 12x14 + 138x13 + 242x12 + 68x11 + 99x10 + 44x9 + 204x8 + 137x7 + 65x6 + 23x5 + 80x4 + 249x3 + 226x2 + 12x1

Discard the lead 0 term to get:

18x18 + 126x17 + 127x16 + 201x15 + 12x14 + 138x13 + 242x12 + 68x11 + 99x10 + 44x9 + 204x8 + 137x7 + 65x6 + 23x5 + 80x4 + 249x3 + 226x2 + 12x1

Step 16a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 18x18. Convert 18x18 to alpha notation. According to the log antilog table, for the integer value 18, the alpha exponent is 224. Therefore 18 = α224. Multiply the generator polynomial by α224:

224 * α0)x18 + (α224 * α215)x17 + (α224 * α234)x16 + (α224 * α158)x15 + (α224 * α94)x14 + (α224 * α184)x13 + (α224 * α97)x12 + (α224 * α118)x11 + (α224 * α170)x10 + (α224 * α79)x9 + (α224 * α187)x8 + (α224 * α152)x7 + (α224 * α148)x6 + (α224 * α252)x5 + (α224 * α179)x4 + (α224 * α5)x3 + (α224 * α98)x2 + (α224 * α96)x1 + (α224 * α153)x0

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α224x18 + α(439 % 255)x17 + α(458 % 255)x16 + α(382 % 255)x15 + α(318 % 255)x14 + α(408 % 255)x13 + α(321 % 255)x12 + α(342 % 255)x11 + α(394 % 255)x10 + α(303 % 255)x9 + α(411 % 255)x8 + α(376 % 255)x7 + α(372 % 255)x6 + α(476 % 255)x5 + α(403 % 255)x4 + α229x3 + α(322 % 255)x2 + α(320 % 255)x1 + α(377 % 255)x0

The result is:

α224x18 + α184x17 + α203x16 + α127x15 + α63x14 + α153x13 + α66x12 + α87x11 + α139x10 + α48x9 + α156x8 + α121x7 + α117x6 + α221x5 + α148x4 + α229x3 + α67x2 + α65x1 + α122x0

Now, convert this to integer notation:

18x18 + 149x17 + 224x16 + 204x15 + 161x14 + 146x13 + 97x12 + 127x11 + 66x10 + 70x9 + 228x8 + 118x7 + 237x6 + 69x5 + 82x4 + 122x3 + 194x2 + 190x1 + 236

Step 16b: XOR the result with the result from step 15b

Use the result from step 15b to perform the next XOR.

(18 ⊕ 18)x18 + (126 ⊕ 149)x17 + (127 ⊕ 224)x16 + (201 ⊕ 204)x15 + (12 ⊕ 161)x14 + (138 ⊕ 146)x13 + (242 ⊕ 97)x12 + (68 ⊕ 127)x11 + (99 ⊕ 66)x10 + (44 ⊕ 70)x9 + (204 ⊕ 228)x8 + (137 ⊕ 118)x7 + (65 ⊕ 237)x6 + (23 ⊕ 69)x5 + (80 ⊕ 82)x4 + (249 ⊕ 122)x3 + (226 ⊕ 194)x2 + (12 ⊕ 190)x1 + (0 ⊕ 236)x0

The result is:

0x18 + 235x17 + 159x16 + 5x15 + 173x14 + 24x13 + 147x12 + 59x11 + 33x10 + 106x9 + 40x8 + 255x7 + 172x6 + 82x5 + 2x4 + 131x3 + 32x2 + 178x1 + 236

Discard the lead 0 term to get:

235x17 + 159x16 + 5x15 + 173x14 + 24x13 + 147x12 + 59x11 + 33x10 + 106x9 + 40x8 + 255x7 + 172x6 + 82x5 + 2x4 + 131x3 + 32x2 + 178x1 + 236

Use the terms of the remainder as the error correction codewords

The division has been performed 16 times, which is the number of terms in the message polynomial. This means that the division is complete and the terms of the above polynomial are the error correction codewords to use for the original message polynomial:

235  159  5  173  24  147  59  33  106  40  255  172  82  2  131  32  178  236