How to Create a Generator Polynomial

By default, this page demonstrates how to create a generator polynomial for 13 error correction code words. If you would like to see the steps for creating generator polynomial for a different number of code words (up to 68), use the form below.

Introduction to Creating a Generator Polynomial

Below, you will find the steps to create a generator polynomial for 13 error correction code words.

However, since we are working with the galois field GF256, we need to use special methods to make sure our numbers don't get too big or too small to stay in the galois field.

When we multiply two alpha values, normally we add the two exponents together. But if the result is bigger than 255, we have a problem.

For example, consider ɑ251 * ɑ10. Multiplying these two gives us ɑ261, but that is too big.

To prevent that from happening, we put the resulting exponent through the following formula:
(exponent % 256) + floor(exponent / 256)

Using the exponent of 261 from the above example, this gives us:
(261 % 256) + floor(261 / 256) = (5) + floor(1.01953125) = (5 + 1) = 6.

So when we multiply ɑ251 * ɑ10, the result is ɑ6.

Another problem is combining like terms. Because of the nature of the galois field, we can't simply add the numbers together. We have to XOR them.

This will cause some unexpected results. For example:
ɑ201x2 + ɑ199x2 = 56x2 + 14x2

If we add those together normally, we get 70x2. This number is not larger than 255, so it would seem acceptable. However, if we perform an XOR instead of addition, we get:
56 ⊕ 14 = 54.

This is the correct result. When adding like terms during the creation of a generator polynomial, you must always XOR the integers rather than adding them.

How to Create a Generator Polynomial

In each step of creating a generator polynomial, you multiply a polynomial by a polynomial. The very first polynomial that you start with in the first step is always 0x1 + ɑ0x0). For each multiplication step, you multiply the current polynomial by 0x1 + ɑjx0) where j is 1 for the first multiplication, 2 for the second multiplication, 3 for the third, and so on.

Multiplication Step #1

We will multiply (ɑ0x1 + ɑ0x0) by (ɑ0x1 + ɑ1x0)

After multiplying each term from the first part with each term from the second part, we get:
0x1 * ɑ0x1) + (ɑ0x0 * ɑ0x1) + (ɑ0x1 * ɑ1x0) + (ɑ0x0 * ɑ1x0)

To multiply, you add the exponents together like this:
(0+0)x(1+1)) + (ɑ(0+0)x(0+1)) + (ɑ(0+1)x(1+0)) + (ɑ(0+1)x(0+0))

After adding the exponents, this is the result:
ɑ0x2 + ɑ0x1 + ɑ1x1 + ɑ1x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256). In this case, all the exponents are less than or equal to 255, so we can continue.

Now you have to combine terms that have the same exponent. In this case, there is more than one x1 term.

We will now combine the x1 terms. they are:
ɑ0x1 + ɑ1x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
1x1 + 2x1

After XORing the integers, we convert the result back to an alpha term.
(1 ⊕ 2)x1 = 3x1 = ɑ25x1

Below is the final polynomial from this step after combining the like terms. If we needed 2 error correction code words, this would be the generator polynomial required.
ɑ0x2 + ɑ25x1 + ɑ1x0

Multiplication Step #2

Using the polynomial that we got from the previous step, we will multiply (ɑ0x2 + ɑ25x1 + ɑ1x0) by (ɑ0x1 + ɑ2x0)

After multiplying each term from the first part with each term from the second part, we get:
0x2 * ɑ0x1) + (ɑ25x1 * ɑ0x1) + (ɑ1x0 * ɑ0x1) + (ɑ0x2 * ɑ2x0) + (ɑ25x1 * ɑ2x0) + (ɑ1x0 * ɑ2x0)

To multiply, you add the exponents together like this:
(0+0)x(2+1)) + (ɑ(25+0)x(1+1)) + (ɑ(1+0)x(0+1)) + (ɑ(0+2)x(2+0)) + (ɑ(25+2)x(1+0)) + (ɑ(1+2)x(0+0))

After adding the exponents, this is the result:
ɑ0x3 + ɑ25x2 + ɑ1x1 + ɑ2x2 + ɑ27x1 + ɑ3x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256). In this case, all the exponents are less than or equal to 255, so we can continue.

Now you have to combine terms that have the same exponent. In this case, there is more than one x2 and x1 term.

We will now combine the x2 terms. they are:
ɑ25x2 + ɑ2x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
3x2 + 4x2

After XORing the integers, we convert the result back to an alpha term.
(3 ⊕ 4)x2 = 7x2 = ɑ198x2

We will now combine the x1 terms. they are:
ɑ1x1 + ɑ27x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
2x1 + 12x1

After XORing the integers, we convert the result back to an alpha term.
(2 ⊕ 12)x1 = 14x1 = ɑ199x1

Below is the final polynomial from this step after combining the like terms. If we needed 3 error correction code words, this would be the generator polynomial required.
ɑ0x3 + ɑ198x2 + ɑ199x1 + ɑ3x0

Multiplication Step #3

Using the polynomial that we got from the previous step, we will multiply (ɑ0x3 + ɑ198x2 + ɑ199x1 + ɑ3x0) by (ɑ0x1 + ɑ3x0)

After multiplying each term from the first part with each term from the second part, we get:
0x3 * ɑ0x1) + (ɑ198x2 * ɑ0x1) + (ɑ199x1 * ɑ0x1) + (ɑ3x0 * ɑ0x1) + (ɑ0x3 * ɑ3x0) + (ɑ198x2 * ɑ3x0) + (ɑ199x1 * ɑ3x0) + (ɑ3x0 * ɑ3x0)

To multiply, you add the exponents together like this:
(0+0)x(3+1)) + (ɑ(198+0)x(2+1)) + (ɑ(199+0)x(1+1)) + (ɑ(3+0)x(0+1)) + (ɑ(0+3)x(3+0)) + (ɑ(198+3)x(2+0)) + (ɑ(199+3)x(1+0)) + (ɑ(3+3)x(0+0))

After adding the exponents, this is the result:
ɑ0x4 + ɑ198x3 + ɑ199x2 + ɑ3x1 + ɑ3x3 + ɑ201x2 + ɑ202x1 + ɑ6x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256). In this case, all the exponents are less than or equal to 255, so we can continue.

Now you have to combine terms that have the same exponent. In this case, there is more than one x3, x2 and x1 term.

We will now combine the x3 terms. they are:
ɑ198x3 + ɑ3x3

We will convert the above alphas to integers using the log antilog table to make this step easier:
7x3 + 8x3

After XORing the integers, we convert the result back to an alpha term.
(7 ⊕ 8)x3 = 15x3 = ɑ75x3

We will now combine the x2 terms. they are:
ɑ199x2 + ɑ201x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
14x2 + 56x2

After XORing the integers, we convert the result back to an alpha term.
(14 ⊕ 56)x2 = 54x2 = ɑ249x2

We will now combine the x1 terms. they are:
ɑ3x1 + ɑ202x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
8x1 + 112x1

After XORing the integers, we convert the result back to an alpha term.
(8 ⊕ 112)x1 = 120x1 = ɑ78x1

Below is the final polynomial from this step after combining the like terms. If we needed 4 error correction code words, this would be the generator polynomial required.
ɑ0x4 + ɑ75x3 + ɑ249x2 + ɑ78x1 + ɑ6x0

Multiplication Step #4

Using the polynomial that we got from the previous step, we will multiply (ɑ0x4 + ɑ75x3 + ɑ249x2 + ɑ78x1 + ɑ6x0) by (ɑ0x1 + ɑ4x0)

After multiplying each term from the first part with each term from the second part, we get:
0x4 * ɑ0x1) + (ɑ75x3 * ɑ0x1) + (ɑ249x2 * ɑ0x1) + (ɑ78x1 * ɑ0x1) + (ɑ6x0 * ɑ0x1) + (ɑ0x4 * ɑ4x0) + (ɑ75x3 * ɑ4x0) + (ɑ249x2 * ɑ4x0) + (ɑ78x1 * ɑ4x0) + (ɑ6x0 * ɑ4x0)

To multiply, you add the exponents together like this:
(0+0)x(4+1)) + (ɑ(75+0)x(3+1)) + (ɑ(249+0)x(2+1)) + (ɑ(78+0)x(1+1)) + (ɑ(6+0)x(0+1)) + (ɑ(0+4)x(4+0)) + (ɑ(75+4)x(3+0)) + (ɑ(249+4)x(2+0)) + (ɑ(78+4)x(1+0)) + (ɑ(6+4)x(0+0))

After adding the exponents, this is the result:
ɑ0x5 + ɑ75x4 + ɑ249x3 + ɑ78x2 + ɑ6x1 + ɑ4x4 + ɑ79x3 + ɑ253x2 + ɑ82x1 + ɑ10x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256). In this case, all the exponents are less than or equal to 255, so we can continue.

Now you have to combine terms that have the same exponent. In this case, there is more than one x4, x3, x2 and x1 term.

We will now combine the x4 terms. they are:
ɑ75x4 + ɑ4x4

We will convert the above alphas to integers using the log antilog table to make this step easier:
15x4 + 16x4

After XORing the integers, we convert the result back to an alpha term.
(15 ⊕ 16)x4 = 31x4 = ɑ113x4

We will now combine the x3 terms. they are:
ɑ249x3 + ɑ79x3

We will convert the above alphas to integers using the log antilog table to make this step easier:
54x3 + 240x3

After XORing the integers, we convert the result back to an alpha term.
(54 ⊕ 240)x3 = 198x3 = ɑ164x3

We will now combine the x2 terms. they are:
ɑ78x2 + ɑ253x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
120x2 + 71x2

After XORing the integers, we convert the result back to an alpha term.
(120 ⊕ 71)x2 = 63x2 = ɑ166x2

We will now combine the x1 terms. they are:
ɑ6x1 + ɑ82x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
64x1 + 211x1

After XORing the integers, we convert the result back to an alpha term.
(64 ⊕ 211)x1 = 147x1 = ɑ119x1

Below is the final polynomial from this step after combining the like terms. If we needed 5 error correction code words, this would be the generator polynomial required.
ɑ0x5 + ɑ113x4 + ɑ164x3 + ɑ166x2 + ɑ119x1 + ɑ10x0

Multiplication Step #5

Using the polynomial that we got from the previous step, we will multiply (ɑ0x5 + ɑ113x4 + ɑ164x3 + ɑ166x2 + ɑ119x1 + ɑ10x0) by (ɑ0x1 + ɑ5x0)

After multiplying each term from the first part with each term from the second part, we get:
0x5 * ɑ0x1) + (ɑ113x4 * ɑ0x1) + (ɑ164x3 * ɑ0x1) + (ɑ166x2 * ɑ0x1) + (ɑ119x1 * ɑ0x1) + (ɑ10x0 * ɑ0x1) + (ɑ0x5 * ɑ5x0) + (ɑ113x4 * ɑ5x0) + (ɑ164x3 * ɑ5x0) + (ɑ166x2 * ɑ5x0) + (ɑ119x1 * ɑ5x0) + (ɑ10x0 * ɑ5x0)

To multiply, you add the exponents together like this:
(0+0)x(5+1)) + (ɑ(113+0)x(4+1)) + (ɑ(164+0)x(3+1)) + (ɑ(166+0)x(2+1)) + (ɑ(119+0)x(1+1)) + (ɑ(10+0)x(0+1)) + (ɑ(0+5)x(5+0)) + (ɑ(113+5)x(4+0)) + (ɑ(164+5)x(3+0)) + (ɑ(166+5)x(2+0)) + (ɑ(119+5)x(1+0)) + (ɑ(10+5)x(0+0))

After adding the exponents, this is the result:
ɑ0x6 + ɑ113x5 + ɑ164x4 + ɑ166x3 + ɑ119x2 + ɑ10x1 + ɑ5x5 + ɑ118x4 + ɑ169x3 + ɑ171x2 + ɑ124x1 + ɑ15x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256). In this case, all the exponents are less than or equal to 255, so we can continue.

Now you have to combine terms that have the same exponent. In this case, there is more than one x5, x4, x3, x2 and x1 term.

We will now combine the x5 terms. they are:
ɑ113x5 + ɑ5x5

We will convert the above alphas to integers using the log antilog table to make this step easier:
31x5 + 32x5

After XORing the integers, we convert the result back to an alpha term.
(31 ⊕ 32)x5 = 63x5 = ɑ166x5

We will now combine the x4 terms. they are:
ɑ164x4 + ɑ118x4

We will convert the above alphas to integers using the log antilog table to make this step easier:
198x4 + 199x4

After XORing the integers, we convert the result back to an alpha term.
(198 ⊕ 199)x4 = 1x4 = ɑ0x4

We will now combine the x3 terms. they are:
ɑ166x3 + ɑ169x3

We will convert the above alphas to integers using the log antilog table to make this step easier:
63x3 + 229x3

After XORing the integers, we convert the result back to an alpha term.
(63 ⊕ 229)x3 = 218x3 = ɑ134x3

We will now combine the x2 terms. they are:
ɑ119x2 + ɑ171x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
147x2 + 179x2

After XORing the integers, we convert the result back to an alpha term.
(147 ⊕ 179)x2 = 32x2 = ɑ5x2

We will now combine the x1 terms. they are:
ɑ10x1 + ɑ124x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
116x1 + 151x1

After XORing the integers, we convert the result back to an alpha term.
(116 ⊕ 151)x1 = 227x1 = ɑ176x1

Below is the final polynomial from this step after combining the like terms. If we needed 6 error correction code words, this would be the generator polynomial required.
ɑ0x6 + ɑ166x5 + ɑ0x4 + ɑ134x3 + ɑ5x2 + ɑ176x1 + ɑ15x0

Multiplication Step #6

Using the polynomial that we got from the previous step, we will multiply (ɑ0x6 + ɑ166x5 + ɑ0x4 + ɑ134x3 + ɑ5x2 + ɑ176x1 + ɑ15x0) by (ɑ0x1 + ɑ6x0)

After multiplying each term from the first part with each term from the second part, we get:
0x6 * ɑ0x1) + (ɑ166x5 * ɑ0x1) + (ɑ0x4 * ɑ0x1) + (ɑ134x3 * ɑ0x1) + (ɑ5x2 * ɑ0x1) + (ɑ176x1 * ɑ0x1) + (ɑ15x0 * ɑ0x1) + (ɑ0x6 * ɑ6x0) + (ɑ166x5 * ɑ6x0) + (ɑ0x4 * ɑ6x0) + (ɑ134x3 * ɑ6x0) + (ɑ5x2 * ɑ6x0) + (ɑ176x1 * ɑ6x0) + (ɑ15x0 * ɑ6x0)

To multiply, you add the exponents together like this:
(0+0)x(6+1)) + (ɑ(166+0)x(5+1)) + (ɑ(0+0)x(4+1)) + (ɑ(134+0)x(3+1)) + (ɑ(5+0)x(2+1)) + (ɑ(176+0)x(1+1)) + (ɑ(15+0)x(0+1)) + (ɑ(0+6)x(6+0)) + (ɑ(166+6)x(5+0)) + (ɑ(0+6)x(4+0)) + (ɑ(134+6)x(3+0)) + (ɑ(5+6)x(2+0)) + (ɑ(176+6)x(1+0)) + (ɑ(15+6)x(0+0))

After adding the exponents, this is the result:
ɑ0x7 + ɑ166x6 + ɑ0x5 + ɑ134x4 + ɑ5x3 + ɑ176x2 + ɑ15x1 + ɑ6x6 + ɑ172x5 + ɑ6x4 + ɑ140x3 + ɑ11x2 + ɑ182x1 + ɑ21x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256). In this case, all the exponents are less than or equal to 255, so we can continue.

Now you have to combine terms that have the same exponent. In this case, there is more than one x6, x5, x4, x3, x2 and x1 term.

We will now combine the x6 terms. they are:
ɑ166x6 + ɑ6x6

We will convert the above alphas to integers using the log antilog table to make this step easier:
63x6 + 64x6

After XORing the integers, we convert the result back to an alpha term.
(63 ⊕ 64)x6 = 127x6 = ɑ87x6

We will now combine the x5 terms. they are:
ɑ0x5 + ɑ172x5

We will convert the above alphas to integers using the log antilog table to make this step easier:
1x5 + 123x5

After XORing the integers, we convert the result back to an alpha term.
(1 ⊕ 123)x5 = 122x5 = ɑ229x5

We will now combine the x4 terms. they are:
ɑ134x4 + ɑ6x4

We will convert the above alphas to integers using the log antilog table to make this step easier:
218x4 + 64x4

After XORing the integers, we convert the result back to an alpha term.
(218 ⊕ 64)x4 = 154x4 = ɑ146x4

We will now combine the x3 terms. they are:
ɑ5x3 + ɑ140x3

We will convert the above alphas to integers using the log antilog table to make this step easier:
32x3 + 132x3

After XORing the integers, we convert the result back to an alpha term.
(32 ⊕ 132)x3 = 164x3 = ɑ149x3

We will now combine the x2 terms. they are:
ɑ176x2 + ɑ11x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
227x2 + 232x2

After XORing the integers, we convert the result back to an alpha term.
(227 ⊕ 232)x2 = 11x2 = ɑ238x2

We will now combine the x1 terms. they are:
ɑ15x1 + ɑ182x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
38x1 + 98x1

After XORing the integers, we convert the result back to an alpha term.
(38 ⊕ 98)x1 = 68x1 = ɑ102x1

Below is the final polynomial from this step after combining the like terms. If we needed 7 error correction code words, this would be the generator polynomial required.
ɑ0x7 + ɑ87x6 + ɑ229x5 + ɑ146x4 + ɑ149x3 + ɑ238x2 + ɑ102x1 + ɑ21x0

Multiplication Step #7

Using the polynomial that we got from the previous step, we will multiply (ɑ0x7 + ɑ87x6 + ɑ229x5 + ɑ146x4 + ɑ149x3 + ɑ238x2 + ɑ102x1 + ɑ21x0) by (ɑ0x1 + ɑ7x0)

After multiplying each term from the first part with each term from the second part, we get:
0x7 * ɑ0x1) + (ɑ87x6 * ɑ0x1) + (ɑ229x5 * ɑ0x1) + (ɑ146x4 * ɑ0x1) + (ɑ149x3 * ɑ0x1) + (ɑ238x2 * ɑ0x1) + (ɑ102x1 * ɑ0x1) + (ɑ21x0 * ɑ0x1) + (ɑ0x7 * ɑ7x0) + (ɑ87x6 * ɑ7x0) + (ɑ229x5 * ɑ7x0) + (ɑ146x4 * ɑ7x0) + (ɑ149x3 * ɑ7x0) + (ɑ238x2 * ɑ7x0) + (ɑ102x1 * ɑ7x0) + (ɑ21x0 * ɑ7x0)

To multiply, you add the exponents together like this:
(0+0)x(7+1)) + (ɑ(87+0)x(6+1)) + (ɑ(229+0)x(5+1)) + (ɑ(146+0)x(4+1)) + (ɑ(149+0)x(3+1)) + (ɑ(238+0)x(2+1)) + (ɑ(102+0)x(1+1)) + (ɑ(21+0)x(0+1)) + (ɑ(0+7)x(7+0)) + (ɑ(87+7)x(6+0)) + (ɑ(229+7)x(5+0)) + (ɑ(146+7)x(4+0)) + (ɑ(149+7)x(3+0)) + (ɑ(238+7)x(2+0)) + (ɑ(102+7)x(1+0)) + (ɑ(21+7)x(0+0))

After adding the exponents, this is the result:
ɑ0x8 + ɑ87x7 + ɑ229x6 + ɑ146x5 + ɑ149x4 + ɑ238x3 + ɑ102x2 + ɑ21x1 + ɑ7x7 + ɑ94x6 + ɑ236x5 + ɑ153x4 + ɑ156x3 + ɑ245x2 + ɑ109x1 + ɑ28x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256). In this case, all the exponents are less than or equal to 255, so we can continue.

Now you have to combine terms that have the same exponent. In this case, there is more than one x7, x6, x5, x4, x3, x2 and x1 term.

We will now combine the x7 terms. they are:
ɑ87x7 + ɑ7x7

We will convert the above alphas to integers using the log antilog table to make this step easier:
127x7 + 128x7

After XORing the integers, we convert the result back to an alpha term.
(127 ⊕ 128)x7 = 255x7 = ɑ175x7

We will now combine the x6 terms. they are:
ɑ229x6 + ɑ94x6

We will convert the above alphas to integers using the log antilog table to make this step easier:
122x6 + 113x6

After XORing the integers, we convert the result back to an alpha term.
(122 ⊕ 113)x6 = 11x6 = ɑ238x6

We will now combine the x5 terms. they are:
ɑ146x5 + ɑ236x5

We will convert the above alphas to integers using the log antilog table to make this step easier:
154x5 + 203x5

After XORing the integers, we convert the result back to an alpha term.
(154 ⊕ 203)x5 = 81x5 = ɑ208x5

We will now combine the x4 terms. they are:
ɑ149x4 + ɑ153x4

We will convert the above alphas to integers using the log antilog table to make this step easier:
164x4 + 146x4

After XORing the integers, we convert the result back to an alpha term.
(164 ⊕ 146)x4 = 54x4 = ɑ249x4

We will now combine the x3 terms. they are:
ɑ238x3 + ɑ156x3

We will convert the above alphas to integers using the log antilog table to make this step easier:
11x3 + 228x3

After XORing the integers, we convert the result back to an alpha term.
(11 ⊕ 228)x3 = 239x3 = ɑ215x3

We will now combine the x2 terms. they are:
ɑ102x2 + ɑ245x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
68x2 + 233x2

After XORing the integers, we convert the result back to an alpha term.
(68 ⊕ 233)x2 = 173x2 = ɑ252x2

We will now combine the x1 terms. they are:
ɑ21x1 + ɑ109x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
117x1 + 189x1

After XORing the integers, we convert the result back to an alpha term.
(117 ⊕ 189)x1 = 200x1 = ɑ196x1

Below is the final polynomial from this step after combining the like terms. If we needed 8 error correction code words, this would be the generator polynomial required.
ɑ0x8 + ɑ175x7 + ɑ238x6 + ɑ208x5 + ɑ249x4 + ɑ215x3 + ɑ252x2 + ɑ196x1 + ɑ28x0

Multiplication Step #8

Using the polynomial that we got from the previous step, we will multiply (ɑ0x8 + ɑ175x7 + ɑ238x6 + ɑ208x5 + ɑ249x4 + ɑ215x3 + ɑ252x2 + ɑ196x1 + ɑ28x0) by (ɑ0x1 + ɑ8x0)

After multiplying each term from the first part with each term from the second part, we get:
0x8 * ɑ0x1) + (ɑ175x7 * ɑ0x1) + (ɑ238x6 * ɑ0x1) + (ɑ208x5 * ɑ0x1) + (ɑ249x4 * ɑ0x1) + (ɑ215x3 * ɑ0x1) + (ɑ252x2 * ɑ0x1) + (ɑ196x1 * ɑ0x1) + (ɑ28x0 * ɑ0x1) + (ɑ0x8 * ɑ8x0) + (ɑ175x7 * ɑ8x0) + (ɑ238x6 * ɑ8x0) + (ɑ208x5 * ɑ8x0) + (ɑ249x4 * ɑ8x0) + (ɑ215x3 * ɑ8x0) + (ɑ252x2 * ɑ8x0) + (ɑ196x1 * ɑ8x0) + (ɑ28x0 * ɑ8x0)

To multiply, you add the exponents together like this:
(0+0)x(8+1)) + (ɑ(175+0)x(7+1)) + (ɑ(238+0)x(6+1)) + (ɑ(208+0)x(5+1)) + (ɑ(249+0)x(4+1)) + (ɑ(215+0)x(3+1)) + (ɑ(252+0)x(2+1)) + (ɑ(196+0)x(1+1)) + (ɑ(28+0)x(0+1)) + (ɑ(0+8)x(8+0)) + (ɑ(175+8)x(7+0)) + (ɑ(238+8)x(6+0)) + (ɑ(208+8)x(5+0)) + (ɑ(249+8)x(4+0)) + (ɑ(215+8)x(3+0)) + (ɑ(252+8)x(2+0)) + (ɑ(196+8)x(1+0)) + (ɑ(28+8)x(0+0))

After adding the exponents, this is the result:
ɑ0x9 + ɑ175x8 + ɑ238x7 + ɑ208x6 + ɑ249x5 + ɑ215x4 + ɑ252x3 + ɑ196x2 + ɑ28x1 + ɑ8x8 + ɑ183x7 + ɑ246x6 + ɑ216x5 + ɑ257x4 + ɑ223x3 + ɑ260x2 + ɑ204x1 + ɑ36x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256)
ɑ0x9 + ɑ175x8 + ɑ238x7 + ɑ208x6 + ɑ249x5 + ɑ215x4 + ɑ252x3 + ɑ196x2 + ɑ28x1 + ɑ8x8 + ɑ183x7 + ɑ246x6 + ɑ216x5 + ɑ2x4 + ɑ223x3 + ɑ5x2 + ɑ204x1 + ɑ36x0

Now you have to combine terms that have the same exponent. In this case, there is more than one x8, x7, x6, x5, x4, x3, x2 and x1 term.

We will now combine the x8 terms. they are:
ɑ175x8 + ɑ8x8

We will convert the above alphas to integers using the log antilog table to make this step easier:
255x8 + 29x8

After XORing the integers, we convert the result back to an alpha term.
(255 ⊕ 29)x8 = 226x8 = ɑ95x8

We will now combine the x7 terms. they are:
ɑ238x7 + ɑ183x7

We will convert the above alphas to integers using the log antilog table to make this step easier:
11x7 + 196x7

After XORing the integers, we convert the result back to an alpha term.
(11 ⊕ 196)x7 = 207x7 = ɑ246x7

We will now combine the x6 terms. they are:
ɑ208x6 + ɑ246x6

We will convert the above alphas to integers using the log antilog table to make this step easier:
81x6 + 207x6

After XORing the integers, we convert the result back to an alpha term.
(81 ⊕ 207)x6 = 158x6 = ɑ137x6

We will now combine the x5 terms. they are:
ɑ249x5 + ɑ216x5

We will convert the above alphas to integers using the log antilog table to make this step easier:
54x5 + 195x5

After XORing the integers, we convert the result back to an alpha term.
(54 ⊕ 195)x5 = 245x5 = ɑ231x5

We will now combine the x4 terms. they are:
ɑ215x4 + ɑ2x4

We will convert the above alphas to integers using the log antilog table to make this step easier:
239x4 + 4x4

After XORing the integers, we convert the result back to an alpha term.
(239 ⊕ 4)x4 = 235x4 = ɑ235x4

We will now combine the x3 terms. they are:
ɑ252x3 + ɑ223x3

We will convert the above alphas to integers using the log antilog table to make this step easier:
173x3 + 9x3

After XORing the integers, we convert the result back to an alpha term.
(173 ⊕ 9)x3 = 164x3 = ɑ149x3

We will now combine the x2 terms. they are:
ɑ196x2 + ɑ5x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
200x2 + 32x2

After XORing the integers, we convert the result back to an alpha term.
(200 ⊕ 32)x2 = 232x2 = ɑ11x2

We will now combine the x1 terms. they are:
ɑ28x1 + ɑ204x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
24x1 + 221x1

After XORing the integers, we convert the result back to an alpha term.
(24 ⊕ 221)x1 = 197x1 = ɑ123x1

Below is the final polynomial from this step after combining the like terms. If we needed 9 error correction code words, this would be the generator polynomial required.
ɑ0x9 + ɑ95x8 + ɑ246x7 + ɑ137x6 + ɑ231x5 + ɑ235x4 + ɑ149x3 + ɑ11x2 + ɑ123x1 + ɑ36x0

Multiplication Step #9

Using the polynomial that we got from the previous step, we will multiply (ɑ0x9 + ɑ95x8 + ɑ246x7 + ɑ137x6 + ɑ231x5 + ɑ235x4 + ɑ149x3 + ɑ11x2 + ɑ123x1 + ɑ36x0) by (ɑ0x1 + ɑ9x0)

After multiplying each term from the first part with each term from the second part, we get:
0x9 * ɑ0x1) + (ɑ95x8 * ɑ0x1) + (ɑ246x7 * ɑ0x1) + (ɑ137x6 * ɑ0x1) + (ɑ231x5 * ɑ0x1) + (ɑ235x4 * ɑ0x1) + (ɑ149x3 * ɑ0x1) + (ɑ11x2 * ɑ0x1) + (ɑ123x1 * ɑ0x1) + (ɑ36x0 * ɑ0x1) + (ɑ0x9 * ɑ9x0) + (ɑ95x8 * ɑ9x0) + (ɑ246x7 * ɑ9x0) + (ɑ137x6 * ɑ9x0) + (ɑ231x5 * ɑ9x0) + (ɑ235x4 * ɑ9x0) + (ɑ149x3 * ɑ9x0) + (ɑ11x2 * ɑ9x0) + (ɑ123x1 * ɑ9x0) + (ɑ36x0 * ɑ9x0)

To multiply, you add the exponents together like this:
(0+0)x(9+1)) + (ɑ(95+0)x(8+1)) + (ɑ(246+0)x(7+1)) + (ɑ(137+0)x(6+1)) + (ɑ(231+0)x(5+1)) + (ɑ(235+0)x(4+1)) + (ɑ(149+0)x(3+1)) + (ɑ(11+0)x(2+1)) + (ɑ(123+0)x(1+1)) + (ɑ(36+0)x(0+1)) + (ɑ(0+9)x(9+0)) + (ɑ(95+9)x(8+0)) + (ɑ(246+9)x(7+0)) + (ɑ(137+9)x(6+0)) + (ɑ(231+9)x(5+0)) + (ɑ(235+9)x(4+0)) + (ɑ(149+9)x(3+0)) + (ɑ(11+9)x(2+0)) + (ɑ(123+9)x(1+0)) + (ɑ(36+9)x(0+0))

After adding the exponents, this is the result:
ɑ0x10 + ɑ95x9 + ɑ246x8 + ɑ137x7 + ɑ231x6 + ɑ235x5 + ɑ149x4 + ɑ11x3 + ɑ123x2 + ɑ36x1 + ɑ9x9 + ɑ104x8 + ɑ255x7 + ɑ146x6 + ɑ240x5 + ɑ244x4 + ɑ158x3 + ɑ20x2 + ɑ132x1 + ɑ45x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256). In this case, all the exponents are less than or equal to 255, so we can continue.

Now you have to combine terms that have the same exponent. In this case, there is more than one x9, x8, x7, x6, x5, x4, x3, x2 and x1 term.

We will now combine the x9 terms. they are:
ɑ95x9 + ɑ9x9

We will convert the above alphas to integers using the log antilog table to make this step easier:
226x9 + 58x9

After XORing the integers, we convert the result back to an alpha term.
(226 ⊕ 58)x9 = 216x9 = ɑ251x9

We will now combine the x8 terms. they are:
ɑ246x8 + ɑ104x8

We will convert the above alphas to integers using the log antilog table to make this step easier:
207x8 + 13x8

After XORing the integers, we convert the result back to an alpha term.
(207 ⊕ 13)x8 = 194x8 = ɑ67x8

We will now combine the x7 terms. they are:
ɑ137x7 + ɑ255x7

We will convert the above alphas to integers using the log antilog table to make this step easier:
158x7 + 1x7

After XORing the integers, we convert the result back to an alpha term.
(158 ⊕ 1)x7 = 159x7 = ɑ46x7

We will now combine the x6 terms. they are:
ɑ231x6 + ɑ146x6

We will convert the above alphas to integers using the log antilog table to make this step easier:
245x6 + 154x6

After XORing the integers, we convert the result back to an alpha term.
(245 ⊕ 154)x6 = 111x6 = ɑ61x6

We will now combine the x5 terms. they are:
ɑ235x5 + ɑ240x5

We will convert the above alphas to integers using the log antilog table to make this step easier:
235x5 + 44x5

After XORing the integers, we convert the result back to an alpha term.
(235 ⊕ 44)x5 = 199x5 = ɑ118x5

We will now combine the x4 terms. they are:
ɑ149x4 + ɑ244x4

We will convert the above alphas to integers using the log antilog table to make this step easier:
164x4 + 250x4

After XORing the integers, we convert the result back to an alpha term.
(164 ⊕ 250)x4 = 94x4 = ɑ70x4

We will now combine the x3 terms. they are:
ɑ11x3 + ɑ158x3

We will convert the above alphas to integers using the log antilog table to make this step easier:
232x3 + 183x3

After XORing the integers, we convert the result back to an alpha term.
(232 ⊕ 183)x3 = 95x3 = ɑ64x3

We will now combine the x2 terms. they are:
ɑ123x2 + ɑ20x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
197x2 + 180x2

After XORing the integers, we convert the result back to an alpha term.
(197 ⊕ 180)x2 = 113x2 = ɑ94x2

We will now combine the x1 terms. they are:
ɑ36x1 + ɑ132x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
37x1 + 184x1

After XORing the integers, we convert the result back to an alpha term.
(37 ⊕ 184)x1 = 157x1 = ɑ32x1

Below is the final polynomial from this step after combining the like terms. If we needed 10 error correction code words, this would be the generator polynomial required.
ɑ0x10 + ɑ251x9 + ɑ67x8 + ɑ46x7 + ɑ61x6 + ɑ118x5 + ɑ70x4 + ɑ64x3 + ɑ94x2 + ɑ32x1 + ɑ45x0

Multiplication Step #10

Using the polynomial that we got from the previous step, we will multiply (ɑ0x10 + ɑ251x9 + ɑ67x8 + ɑ46x7 + ɑ61x6 + ɑ118x5 + ɑ70x4 + ɑ64x3 + ɑ94x2 + ɑ32x1 + ɑ45x0) by (ɑ0x1 + ɑ10x0)

After multiplying each term from the first part with each term from the second part, we get:
0x10 * ɑ0x1) + (ɑ251x9 * ɑ0x1) + (ɑ67x8 * ɑ0x1) + (ɑ46x7 * ɑ0x1) + (ɑ61x6 * ɑ0x1) + (ɑ118x5 * ɑ0x1) + (ɑ70x4 * ɑ0x1) + (ɑ64x3 * ɑ0x1) + (ɑ94x2 * ɑ0x1) + (ɑ32x1 * ɑ0x1) + (ɑ45x0 * ɑ0x1) + (ɑ0x10 * ɑ10x0) + (ɑ251x9 * ɑ10x0) + (ɑ67x8 * ɑ10x0) + (ɑ46x7 * ɑ10x0) + (ɑ61x6 * ɑ10x0) + (ɑ118x5 * ɑ10x0) + (ɑ70x4 * ɑ10x0) + (ɑ64x3 * ɑ10x0) + (ɑ94x2 * ɑ10x0) + (ɑ32x1 * ɑ10x0) + (ɑ45x0 * ɑ10x0)

To multiply, you add the exponents together like this:
(0+0)x(10+1)) + (ɑ(251+0)x(9+1)) + (ɑ(67+0)x(8+1)) + (ɑ(46+0)x(7+1)) + (ɑ(61+0)x(6+1)) + (ɑ(118+0)x(5+1)) + (ɑ(70+0)x(4+1)) + (ɑ(64+0)x(3+1)) + (ɑ(94+0)x(2+1)) + (ɑ(32+0)x(1+1)) + (ɑ(45+0)x(0+1)) + (ɑ(0+10)x(10+0)) + (ɑ(251+10)x(9+0)) + (ɑ(67+10)x(8+0)) + (ɑ(46+10)x(7+0)) + (ɑ(61+10)x(6+0)) + (ɑ(118+10)x(5+0)) + (ɑ(70+10)x(4+0)) + (ɑ(64+10)x(3+0)) + (ɑ(94+10)x(2+0)) + (ɑ(32+10)x(1+0)) + (ɑ(45+10)x(0+0))

After adding the exponents, this is the result:
ɑ0x11 + ɑ251x10 + ɑ67x9 + ɑ46x8 + ɑ61x7 + ɑ118x6 + ɑ70x5 + ɑ64x4 + ɑ94x3 + ɑ32x2 + ɑ45x1 + ɑ10x10 + ɑ261x9 + ɑ77x8 + ɑ56x7 + ɑ71x6 + ɑ128x5 + ɑ80x4 + ɑ74x3 + ɑ104x2 + ɑ42x1 + ɑ55x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256)
ɑ0x11 + ɑ251x10 + ɑ67x9 + ɑ46x8 + ɑ61x7 + ɑ118x6 + ɑ70x5 + ɑ64x4 + ɑ94x3 + ɑ32x2 + ɑ45x1 + ɑ10x10 + ɑ6x9 + ɑ77x8 + ɑ56x7 + ɑ71x6 + ɑ128x5 + ɑ80x4 + ɑ74x3 + ɑ104x2 + ɑ42x1 + ɑ55x0

Now you have to combine terms that have the same exponent. In this case, there is more than one x10, x9, x8, x7, x6, x5, x4, x3, x2 and x1 term.

We will now combine the x10 terms. they are:
ɑ251x10 + ɑ10x10

We will convert the above alphas to integers using the log antilog table to make this step easier:
216x10 + 116x10

After XORing the integers, we convert the result back to an alpha term.
(216 ⊕ 116)x10 = 172x10 = ɑ220x10

We will now combine the x9 terms. they are:
ɑ67x9 + ɑ6x9

We will convert the above alphas to integers using the log antilog table to make this step easier:
194x9 + 64x9

After XORing the integers, we convert the result back to an alpha term.
(194 ⊕ 64)x9 = 130x9 = ɑ192x9

We will now combine the x8 terms. they are:
ɑ46x8 + ɑ77x8

We will convert the above alphas to integers using the log antilog table to make this step easier:
159x8 + 60x8

After XORing the integers, we convert the result back to an alpha term.
(159 ⊕ 60)x8 = 163x8 = ɑ91x8

We will now combine the x7 terms. they are:
ɑ61x7 + ɑ56x7

We will convert the above alphas to integers using the log antilog table to make this step easier:
111x7 + 93x7

After XORing the integers, we convert the result back to an alpha term.
(111 ⊕ 93)x7 = 50x7 = ɑ194x7

We will now combine the x6 terms. they are:
ɑ118x6 + ɑ71x6

We will convert the above alphas to integers using the log antilog table to make this step easier:
199x6 + 188x6

After XORing the integers, we convert the result back to an alpha term.
(199 ⊕ 188)x6 = 123x6 = ɑ172x6

We will now combine the x5 terms. they are:
ɑ70x5 + ɑ128x5

We will convert the above alphas to integers using the log antilog table to make this step easier:
94x5 + 133x5

After XORing the integers, we convert the result back to an alpha term.
(94 ⊕ 133)x5 = 219x5 = ɑ177x5

We will now combine the x4 terms. they are:
ɑ64x4 + ɑ80x4

We will convert the above alphas to integers using the log antilog table to make this step easier:
95x4 + 253x4

After XORing the integers, we convert the result back to an alpha term.
(95 ⊕ 253)x4 = 162x4 = ɑ209x4

We will now combine the x3 terms. they are:
ɑ94x3 + ɑ74x3

We will convert the above alphas to integers using the log antilog table to make this step easier:
113x3 + 137x3

After XORing the integers, we convert the result back to an alpha term.
(113 ⊕ 137)x3 = 248x3 = ɑ116x3

We will now combine the x2 terms. they are:
ɑ32x2 + ɑ104x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
157x2 + 13x2

After XORing the integers, we convert the result back to an alpha term.
(157 ⊕ 13)x2 = 144x2 = ɑ227x2

We will now combine the x1 terms. they are:
ɑ45x1 + ɑ42x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
193x1 + 181x1

After XORing the integers, we convert the result back to an alpha term.
(193 ⊕ 181)x1 = 116x1 = ɑ10x1

Below is the final polynomial from this step after combining the like terms. If we needed 11 error correction code words, this would be the generator polynomial required.
ɑ0x11 + ɑ220x10 + ɑ192x9 + ɑ91x8 + ɑ194x7 + ɑ172x6 + ɑ177x5 + ɑ209x4 + ɑ116x3 + ɑ227x2 + ɑ10x1 + ɑ55x0

Multiplication Step #11

Using the polynomial that we got from the previous step, we will multiply (ɑ0x11 + ɑ220x10 + ɑ192x9 + ɑ91x8 + ɑ194x7 + ɑ172x6 + ɑ177x5 + ɑ209x4 + ɑ116x3 + ɑ227x2 + ɑ10x1 + ɑ55x0) by (ɑ0x1 + ɑ11x0)

After multiplying each term from the first part with each term from the second part, we get:
0x11 * ɑ0x1) + (ɑ220x10 * ɑ0x1) + (ɑ192x9 * ɑ0x1) + (ɑ91x8 * ɑ0x1) + (ɑ194x7 * ɑ0x1) + (ɑ172x6 * ɑ0x1) + (ɑ177x5 * ɑ0x1) + (ɑ209x4 * ɑ0x1) + (ɑ116x3 * ɑ0x1) + (ɑ227x2 * ɑ0x1) + (ɑ10x1 * ɑ0x1) + (ɑ55x0 * ɑ0x1) + (ɑ0x11 * ɑ11x0) + (ɑ220x10 * ɑ11x0) + (ɑ192x9 * ɑ11x0) + (ɑ91x8 * ɑ11x0) + (ɑ194x7 * ɑ11x0) + (ɑ172x6 * ɑ11x0) + (ɑ177x5 * ɑ11x0) + (ɑ209x4 * ɑ11x0) + (ɑ116x3 * ɑ11x0) + (ɑ227x2 * ɑ11x0) + (ɑ10x1 * ɑ11x0) + (ɑ55x0 * ɑ11x0)

To multiply, you add the exponents together like this:
(0+0)x(11+1)) + (ɑ(220+0)x(10+1)) + (ɑ(192+0)x(9+1)) + (ɑ(91+0)x(8+1)) + (ɑ(194+0)x(7+1)) + (ɑ(172+0)x(6+1)) + (ɑ(177+0)x(5+1)) + (ɑ(209+0)x(4+1)) + (ɑ(116+0)x(3+1)) + (ɑ(227+0)x(2+1)) + (ɑ(10+0)x(1+1)) + (ɑ(55+0)x(0+1)) + (ɑ(0+11)x(11+0)) + (ɑ(220+11)x(10+0)) + (ɑ(192+11)x(9+0)) + (ɑ(91+11)x(8+0)) + (ɑ(194+11)x(7+0)) + (ɑ(172+11)x(6+0)) + (ɑ(177+11)x(5+0)) + (ɑ(209+11)x(4+0)) + (ɑ(116+11)x(3+0)) + (ɑ(227+11)x(2+0)) + (ɑ(10+11)x(1+0)) + (ɑ(55+11)x(0+0))

After adding the exponents, this is the result:
ɑ0x12 + ɑ220x11 + ɑ192x10 + ɑ91x9 + ɑ194x8 + ɑ172x7 + ɑ177x6 + ɑ209x5 + ɑ116x4 + ɑ227x3 + ɑ10x2 + ɑ55x1 + ɑ11x11 + ɑ231x10 + ɑ203x9 + ɑ102x8 + ɑ205x7 + ɑ183x6 + ɑ188x5 + ɑ220x4 + ɑ127x3 + ɑ238x2 + ɑ21x1 + ɑ66x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256). In this case, all the exponents are less than or equal to 255, so we can continue.

Now you have to combine terms that have the same exponent. In this case, there is more than one x11, x10, x9, x8, x7, x6, x5, x4, x3, x2 and x1 term.

We will now combine the x11 terms. they are:
ɑ220x11 + ɑ11x11

We will convert the above alphas to integers using the log antilog table to make this step easier:
172x11 + 232x11

After XORing the integers, we convert the result back to an alpha term.
(172 ⊕ 232)x11 = 68x11 = ɑ102x11

We will now combine the x10 terms. they are:
ɑ192x10 + ɑ231x10

We will convert the above alphas to integers using the log antilog table to make this step easier:
130x10 + 245x10

After XORing the integers, we convert the result back to an alpha term.
(130 ⊕ 245)x10 = 119x10 = ɑ43x10

We will now combine the x9 terms. they are:
ɑ91x9 + ɑ203x9

We will convert the above alphas to integers using the log antilog table to make this step easier:
163x9 + 224x9

After XORing the integers, we convert the result back to an alpha term.
(163 ⊕ 224)x9 = 67x9 = ɑ98x9

We will now combine the x8 terms. they are:
ɑ194x8 + ɑ102x8

We will convert the above alphas to integers using the log antilog table to make this step easier:
50x8 + 68x8

After XORing the integers, we convert the result back to an alpha term.
(50 ⊕ 68)x8 = 118x8 = ɑ121x8

We will now combine the x7 terms. they are:
ɑ172x7 + ɑ205x7

We will convert the above alphas to integers using the log antilog table to make this step easier:
123x7 + 167x7

After XORing the integers, we convert the result back to an alpha term.
(123 ⊕ 167)x7 = 220x7 = ɑ187x7

We will now combine the x6 terms. they are:
ɑ177x6 + ɑ183x6

We will convert the above alphas to integers using the log antilog table to make this step easier:
219x6 + 196x6

After XORing the integers, we convert the result back to an alpha term.
(219 ⊕ 196)x6 = 31x6 = ɑ113x6

We will now combine the x5 terms. they are:
ɑ209x5 + ɑ188x5

We will convert the above alphas to integers using the log antilog table to make this step easier:
162x5 + 165x5

After XORing the integers, we convert the result back to an alpha term.
(162 ⊕ 165)x5 = 7x5 = ɑ198x5

We will now combine the x4 terms. they are:
ɑ116x4 + ɑ220x4

We will convert the above alphas to integers using the log antilog table to make this step easier:
248x4 + 172x4

After XORing the integers, we convert the result back to an alpha term.
(248 ⊕ 172)x4 = 84x4 = ɑ143x4

We will now combine the x3 terms. they are:
ɑ227x3 + ɑ127x3

We will convert the above alphas to integers using the log antilog table to make this step easier:
144x3 + 204x3

After XORing the integers, we convert the result back to an alpha term.
(144 ⊕ 204)x3 = 92x3 = ɑ131x3

We will now combine the x2 terms. they are:
ɑ10x2 + ɑ238x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
116x2 + 11x2

After XORing the integers, we convert the result back to an alpha term.
(116 ⊕ 11)x2 = 127x2 = ɑ87x2

We will now combine the x1 terms. they are:
ɑ55x1 + ɑ21x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
160x1 + 117x1

After XORing the integers, we convert the result back to an alpha term.
(160 ⊕ 117)x1 = 213x1 = ɑ157x1

Below is the final polynomial from this step after combining the like terms. If we needed 12 error correction code words, this would be the generator polynomial required.
ɑ0x12 + ɑ102x11 + ɑ43x10 + ɑ98x9 + ɑ121x8 + ɑ187x7 + ɑ113x6 + ɑ198x5 + ɑ143x4 + ɑ131x3 + ɑ87x2 + ɑ157x1 + ɑ66x0

Multiplication Step #12

Using the polynomial that we got from the previous step, we will multiply (ɑ0x12 + ɑ102x11 + ɑ43x10 + ɑ98x9 + ɑ121x8 + ɑ187x7 + ɑ113x6 + ɑ198x5 + ɑ143x4 + ɑ131x3 + ɑ87x2 + ɑ157x1 + ɑ66x0) by (ɑ0x1 + ɑ12x0)

After multiplying each term from the first part with each term from the second part, we get:
0x12 * ɑ0x1) + (ɑ102x11 * ɑ0x1) + (ɑ43x10 * ɑ0x1) + (ɑ98x9 * ɑ0x1) + (ɑ121x8 * ɑ0x1) + (ɑ187x7 * ɑ0x1) + (ɑ113x6 * ɑ0x1) + (ɑ198x5 * ɑ0x1) + (ɑ143x4 * ɑ0x1) + (ɑ131x3 * ɑ0x1) + (ɑ87x2 * ɑ0x1) + (ɑ157x1 * ɑ0x1) + (ɑ66x0 * ɑ0x1) + (ɑ0x12 * ɑ12x0) + (ɑ102x11 * ɑ12x0) + (ɑ43x10 * ɑ12x0) + (ɑ98x9 * ɑ12x0) + (ɑ121x8 * ɑ12x0) + (ɑ187x7 * ɑ12x0) + (ɑ113x6 * ɑ12x0) + (ɑ198x5 * ɑ12x0) + (ɑ143x4 * ɑ12x0) + (ɑ131x3 * ɑ12x0) + (ɑ87x2 * ɑ12x0) + (ɑ157x1 * ɑ12x0) + (ɑ66x0 * ɑ12x0)

To multiply, you add the exponents together like this:
(0+0)x(12+1)) + (ɑ(102+0)x(11+1)) + (ɑ(43+0)x(10+1)) + (ɑ(98+0)x(9+1)) + (ɑ(121+0)x(8+1)) + (ɑ(187+0)x(7+1)) + (ɑ(113+0)x(6+1)) + (ɑ(198+0)x(5+1)) + (ɑ(143+0)x(4+1)) + (ɑ(131+0)x(3+1)) + (ɑ(87+0)x(2+1)) + (ɑ(157+0)x(1+1)) + (ɑ(66+0)x(0+1)) + (ɑ(0+12)x(12+0)) + (ɑ(102+12)x(11+0)) + (ɑ(43+12)x(10+0)) + (ɑ(98+12)x(9+0)) + (ɑ(121+12)x(8+0)) + (ɑ(187+12)x(7+0)) + (ɑ(113+12)x(6+0)) + (ɑ(198+12)x(5+0)) + (ɑ(143+12)x(4+0)) + (ɑ(131+12)x(3+0)) + (ɑ(87+12)x(2+0)) + (ɑ(157+12)x(1+0)) + (ɑ(66+12)x(0+0))

After adding the exponents, this is the result:
ɑ0x13 + ɑ102x12 + ɑ43x11 + ɑ98x10 + ɑ121x9 + ɑ187x8 + ɑ113x7 + ɑ198x6 + ɑ143x5 + ɑ131x4 + ɑ87x3 + ɑ157x2 + ɑ66x1 + ɑ12x12 + ɑ114x11 + ɑ55x10 + ɑ110x9 + ɑ133x8 + ɑ199x7 + ɑ125x6 + ɑ210x5 + ɑ155x4 + ɑ143x3 + ɑ99x2 + ɑ169x1 + ɑ78x0

If there are any exponents that are larger than 255, fix them by putting them through the formula
(exponent % 256) + floor(exponent / 256). In this case, all the exponents are less than or equal to 255, so we can continue.

Now you have to combine terms that have the same exponent. In this case, there is more than one x12, x11, x10, x9, x8, x7, x6, x5, x4, x3, x2 and x1 term.

We will now combine the x12 terms. they are:
ɑ102x12 + ɑ12x12

We will convert the above alphas to integers using the log antilog table to make this step easier:
68x12 + 205x12

After XORing the integers, we convert the result back to an alpha term.
(68 ⊕ 205)x12 = 137x12 = ɑ74x12

We will now combine the x11 terms. they are:
ɑ43x11 + ɑ114x11

We will convert the above alphas to integers using the log antilog table to make this step easier:
119x11 + 62x11

After XORing the integers, we convert the result back to an alpha term.
(119 ⊕ 62)x11 = 73x11 = ɑ152x11

We will now combine the x10 terms. they are:
ɑ98x10 + ɑ55x10

We will convert the above alphas to integers using the log antilog table to make this step easier:
67x10 + 160x10

After XORing the integers, we convert the result back to an alpha term.
(67 ⊕ 160)x10 = 227x10 = ɑ176x10

We will now combine the x9 terms. they are:
ɑ121x9 + ɑ110x9

We will convert the above alphas to integers using the log antilog table to make this step easier:
118x9 + 103x9

After XORing the integers, we convert the result back to an alpha term.
(118 ⊕ 103)x9 = 17x9 = ɑ100x9

We will now combine the x8 terms. they are:
ɑ187x8 + ɑ133x8

We will convert the above alphas to integers using the log antilog table to make this step easier:
220x8 + 109x8

After XORing the integers, we convert the result back to an alpha term.
(220 ⊕ 109)x8 = 177x8 = ɑ86x8

We will now combine the x7 terms. they are:
ɑ113x7 + ɑ199x7

We will convert the above alphas to integers using the log antilog table to make this step easier:
31x7 + 14x7

After XORing the integers, we convert the result back to an alpha term.
(31 ⊕ 14)x7 = 17x7 = ɑ100x7

We will now combine the x6 terms. they are:
ɑ198x6 + ɑ125x6

We will convert the above alphas to integers using the log antilog table to make this step easier:
7x6 + 51x6

After XORing the integers, we convert the result back to an alpha term.
(7 ⊕ 51)x6 = 52x6 = ɑ106x6

We will now combine the x5 terms. they are:
ɑ143x5 + ɑ210x5

We will convert the above alphas to integers using the log antilog table to make this step easier:
84x5 + 89x5

After XORing the integers, we convert the result back to an alpha term.
(84 ⊕ 89)x5 = 13x5 = ɑ104x5

We will now combine the x4 terms. they are:
ɑ131x4 + ɑ155x4

We will convert the above alphas to integers using the log antilog table to make this step easier:
92x4 + 114x4

After XORing the integers, we convert the result back to an alpha term.
(92 ⊕ 114)x4 = 46x4 = ɑ130x4

We will now combine the x3 terms. they are:
ɑ87x3 + ɑ143x3

We will convert the above alphas to integers using the log antilog table to make this step easier:
127x3 + 84x3

After XORing the integers, we convert the result back to an alpha term.
(127 ⊕ 84)x3 = 43x3 = ɑ218x3

We will now combine the x2 terms. they are:
ɑ157x2 + ɑ99x2

We will convert the above alphas to integers using the log antilog table to make this step easier:
213x2 + 134x2

After XORing the integers, we convert the result back to an alpha term.
(213 ⊕ 134)x2 = 83x2 = ɑ206x2

We will now combine the x1 terms. they are:
ɑ66x1 + ɑ169x1

We will convert the above alphas to integers using the log antilog table to make this step easier:
97x1 + 229x1

After XORing the integers, we convert the result back to an alpha term.
(97 ⊕ 229)x1 = 132x1 = ɑ140x1

Below is the final polynomial from this step after combining the like terms. If we needed 13 error correction code words, this would be the generator polynomial required.
ɑ0x13 + ɑ74x12 + ɑ152x11 + ɑ176x10 + ɑ100x9 + ɑ86x8 + ɑ100x7 + ɑ106x6 + ɑ104x5 + ɑ130x4 + ɑ218x3 + ɑ206x2 + ɑ140x1 + ɑ78x0

Final result:
0x13 + ɑ74x12 + ɑ152x11 + ɑ176x10 + ɑ100x9 + ɑ86x8 + ɑ100x7 + ɑ106x6 + ɑ104x5 + ɑ130x4 + ɑ218x3 + ɑ206x2 + ɑ140x1 + ɑ78x0)