Show polynomial division steps

This page demonstrates how to generate ECC blocks by performing polynomial divison on a message polynomial. Just enter the coefficients of the message polynomial and the desired number of ECC blocks, then click Perform Division.

If the steps are unclear, please read the error correction generation section of the tutorial, which includes a detailed explanation of these steps.


(example: 32,91,11,120,209,114,220,77,67,64,236,17,236 )

(example: 13 )

Polynomial Division Steps

The first step to the division is to prepare the message polynomial for the division. The full message polynomial is:

67x14 + 85x13 + 70x12 + 134x11 + 87x10 + 38x9 + 85x8 + 194x7 + 119x6 + 50x5 + 6x4 + 18x3 + 6x2 + 103x1 + 38

To make sure that the exponent of the lead term doesn't become too small during the division, multiply the message polynomial by xn where n is the number of error correction codewords that are needed. In this case n is 18, for 18 error correction codewords, so multiply the message polynomial by x18, which gives us:

67x32 + 85x31 + 70x30 + 134x29 + 87x28 + 38x27 + 85x26 + 194x25 + 119x24 + 50x23 + 6x22 + 18x21 + 6x20 + 103x19 + 38x18

The lead term of the generator polynomial should also have the same exponent, so multiply by x14 to get

α0x32 + α215x31 + α234x30 + α158x29 + α94x28 + α184x27 + α97x26 + α118x25 + α170x24 + α79x23 + α187x22 + α152x21 + α148x20 + α252x19 + α179x18 + α5x17 + α98x16 + α96x15 + α153x14

Now it is possible to perform the repeated division steps. The number of steps in the division must equal the number of terms in the message polynomial. In this case, the division will take 15 steps to complete. This will result in a remainder that has 18 terms. These terms will be the 18 error correction codewords that are required.

Step 1a: Multiply the Generator Polynomial by the Lead Term of the Message Polynomial

The first step is to multiply the generator polynomial by the lead term of the message polynomial. The lead term in this case is 67x32. Since alpha notation makes it easier to perform the multiplication, it is recommended to convert 67x32 to alpha notation. According to the log antilog table, for the integer value 67, the alpha exponent is 98. Therefore 67 = α98. Multiply the generator polynomial by α98:

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α98x32 + α(313 % 255)x31 + α(332 % 255)x30 + α(256 % 255)x29 + α192x28 + α(282 % 255)x27 + α195x26 + α216x25 + α(268 % 255)x24 + α177x23 + α(285 % 255)x22 + α250x21 + α246x20 + α(350 % 255)x19 + α(277 % 255)x18 + α103x17 + α196x16 + α194x15 + α251x14

The result is:

α98x32 + α58x31 + α77x30 + α1x29 + α192x28 + α27x27 + α195x26 + α216x25 + α13x24 + α177x23 + α30x22 + α250x21 + α246x20 + α95x19 + α22x18 + α103x17 + α196x16 + α194x15 + α251x14

Now, convert this to integer notation:

67x32 + 105x31 + 60x30 + 2x29 + 130x28 + 12x27 + 100x26 + 195x25 + 135x24 + 219x23 + 96x22 + 108x21 + 207x20 + 226x19 + 234x18 + 136x17 + 200x16 + 50x15 + 216x14

Step 1b: XOR the result with the message polynomial

Since this is the first division step, XOR the result from 1a with the message polynomial.

(67 ⊕ 67)x32 + (85 ⊕ 105)x31 + (70 ⊕ 60)x30 + (134 ⊕ 2)x29 + (87 ⊕ 130)x28 + (38 ⊕ 12)x27 + (85 ⊕ 100)x26 + (194 ⊕ 195)x25 + (119 ⊕ 135)x24 + (50 ⊕ 219)x23 + (6 ⊕ 96)x22 + (18 ⊕ 108)x21 + (6 ⊕ 207)x20 + (103 ⊕ 226)x19 + (38 ⊕ 234)x18 + (0 ⊕ 136)x17 + (0 ⊕ 200)x16 + (0 ⊕ 50)x15 + (0 ⊕ 216)x14

The result is:

0x32 + 60x31 + 122x30 + 132x29 + 213x28 + 42x27 + 49x26 + 1x25 + 240x24 + 233x23 + 102x22 + 126x21 + 201x20 + 133x19 + 204x18 + 136x17 + 200x16 + 50x15 + 216x14

Discard the lead 0 term to get:

60x31 + 122x30 + 132x29 + 213x28 + 42x27 + 49x26 + 1x25 + 240x24 + 233x23 + 102x22 + 126x21 + 201x20 + 133x19 + 204x18 + 136x17 + 200x16 + 50x15 + 216x14

Step 2a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 60x31. Convert 60x31 to alpha notation. According to the log antilog table, for the integer value 60, the alpha exponent is 77. Therefore 60 = α77. Multiply the generator polynomial by α77:

77 * α0)x31 + (α77 * α215)x30 + (α77 * α234)x29 + (α77 * α158)x28 + (α77 * α94)x27 + (α77 * α184)x26 + (α77 * α97)x25 + (α77 * α118)x24 + (α77 * α170)x23 + (α77 * α79)x22 + (α77 * α187)x21 + (α77 * α152)x20 + (α77 * α148)x19 + (α77 * α252)x18 + (α77 * α179)x17 + (α77 * α5)x16 + (α77 * α98)x15 + (α77 * α96)x14 + (α77 * α153)x13

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α77x31 + α(292 % 255)x30 + α(311 % 255)x29 + α235x28 + α171x27 + α(261 % 255)x26 + α174x25 + α195x24 + α247x23 + α156x22 + α(264 % 255)x21 + α229x20 + α225x19 + α(329 % 255)x18 + α(256 % 255)x17 + α82x16 + α175x15 + α173x14 + α230x13

The result is:

α77x31 + α37x30 + α56x29 + α235x28 + α171x27 + α6x26 + α174x25 + α195x24 + α247x23 + α156x22 + α9x21 + α229x20 + α225x19 + α74x18 + α1x17 + α82x16 + α175x15 + α173x14 + α230x13

Now, convert this to integer notation:

60x31 + 74x30 + 93x29 + 235x28 + 179x27 + 64x26 + 241x25 + 100x24 + 131x23 + 228x22 + 58x21 + 122x20 + 36x19 + 137x18 + 2x17 + 211x16 + 255x15 + 246x14 + 244x13

Step 2b: XOR the result with the result from step 1b

Use the result from step 1b to perform the next XOR.

(60 ⊕ 60)x31 + (122 ⊕ 74)x30 + (132 ⊕ 93)x29 + (213 ⊕ 235)x28 + (42 ⊕ 179)x27 + (49 ⊕ 64)x26 + (1 ⊕ 241)x25 + (240 ⊕ 100)x24 + (233 ⊕ 131)x23 + (102 ⊕ 228)x22 + (126 ⊕ 58)x21 + (201 ⊕ 122)x20 + (133 ⊕ 36)x19 + (204 ⊕ 137)x18 + (136 ⊕ 2)x17 + (200 ⊕ 211)x16 + (50 ⊕ 255)x15 + (216 ⊕ 246)x14 + (0 ⊕ 244)x13

The result is:

0x31 + 48x30 + 217x29 + 62x28 + 153x27 + 113x26 + 240x25 + 148x24 + 106x23 + 130x22 + 68x21 + 179x20 + 161x19 + 69x18 + 138x17 + 27x16 + 205x15 + 46x14 + 244x13

Discard the lead 0 term to get:

48x30 + 217x29 + 62x28 + 153x27 + 113x26 + 240x25 + 148x24 + 106x23 + 130x22 + 68x21 + 179x20 + 161x19 + 69x18 + 138x17 + 27x16 + 205x15 + 46x14 + 244x13

Step 3a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 48x30. Convert 48x30 to alpha notation. According to the log antilog table, for the integer value 48, the alpha exponent is 29. Therefore 48 = α29. Multiply the generator polynomial by α29:

29 * α0)x30 + (α29 * α215)x29 + (α29 * α234)x28 + (α29 * α158)x27 + (α29 * α94)x26 + (α29 * α184)x25 + (α29 * α97)x24 + (α29 * α118)x23 + (α29 * α170)x22 + (α29 * α79)x21 + (α29 * α187)x20 + (α29 * α152)x19 + (α29 * α148)x18 + (α29 * α252)x17 + (α29 * α179)x16 + (α29 * α5)x15 + (α29 * α98)x14 + (α29 * α96)x13 + (α29 * α153)x12

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α29x30 + α244x29 + α(263 % 255)x28 + α187x27 + α123x26 + α213x25 + α126x24 + α147x23 + α199x22 + α108x21 + α216x20 + α181x19 + α177x18 + α(281 % 255)x17 + α208x16 + α34x15 + α127x14 + α125x13 + α182x12

The result is:

α29x30 + α244x29 + α8x28 + α187x27 + α123x26 + α213x25 + α126x24 + α147x23 + α199x22 + α108x21 + α216x20 + α181x19 + α177x18 + α26x17 + α208x16 + α34x15 + α127x14 + α125x13 + α182x12

Now, convert this to integer notation:

48x30 + 250x29 + 29x28 + 220x27 + 197x26 + 242x25 + 102x24 + 41x23 + 14x22 + 208x21 + 195x20 + 49x19 + 219x18 + 6x17 + 81x16 + 78x15 + 204x14 + 51x13 + 98x12

Step 3b: XOR the result with the result from step 2b

Use the result from step 2b to perform the next XOR.

(48 ⊕ 48)x30 + (217 ⊕ 250)x29 + (62 ⊕ 29)x28 + (153 ⊕ 220)x27 + (113 ⊕ 197)x26 + (240 ⊕ 242)x25 + (148 ⊕ 102)x24 + (106 ⊕ 41)x23 + (130 ⊕ 14)x22 + (68 ⊕ 208)x21 + (179 ⊕ 195)x20 + (161 ⊕ 49)x19 + (69 ⊕ 219)x18 + (138 ⊕ 6)x17 + (27 ⊕ 81)x16 + (205 ⊕ 78)x15 + (46 ⊕ 204)x14 + (244 ⊕ 51)x13 + (0 ⊕ 98)x12

The result is:

0x30 + 35x29 + 35x28 + 69x27 + 180x26 + 2x25 + 242x24 + 67x23 + 140x22 + 148x21 + 112x20 + 144x19 + 158x18 + 140x17 + 74x16 + 131x15 + 226x14 + 199x13 + 98x12

Discard the lead 0 term to get:

35x29 + 35x28 + 69x27 + 180x26 + 2x25 + 242x24 + 67x23 + 140x22 + 148x21 + 112x20 + 144x19 + 158x18 + 140x17 + 74x16 + 131x15 + 226x14 + 199x13 + 98x12

Step 4a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 35x29. Convert 35x29 to alpha notation. According to the log antilog table, for the integer value 35, the alpha exponent is 47. Therefore 35 = α47. Multiply the generator polynomial by α47:

47 * α0)x29 + (α47 * α215)x28 + (α47 * α234)x27 + (α47 * α158)x26 + (α47 * α94)x25 + (α47 * α184)x24 + (α47 * α97)x23 + (α47 * α118)x22 + (α47 * α170)x21 + (α47 * α79)x20 + (α47 * α187)x19 + (α47 * α152)x18 + (α47 * α148)x17 + (α47 * α252)x16 + (α47 * α179)x15 + (α47 * α5)x14 + (α47 * α98)x13 + (α47 * α96)x12 + (α47 * α153)x11

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α47x29 + α(262 % 255)x28 + α(281 % 255)x27 + α205x26 + α141x25 + α231x24 + α144x23 + α165x22 + α217x21 + α126x20 + α234x19 + α199x18 + α195x17 + α(299 % 255)x16 + α226x15 + α52x14 + α145x13 + α143x12 + α200x11

The result is:

α47x29 + α7x28 + α26x27 + α205x26 + α141x25 + α231x24 + α144x23 + α165x22 + α217x21 + α126x20 + α234x19 + α199x18 + α195x17 + α44x16 + α226x15 + α52x14 + α145x13 + α143x12 + α200x11

Now, convert this to integer notation:

35x29 + 128x28 + 6x27 + 167x26 + 21x25 + 245x24 + 168x23 + 145x22 + 155x21 + 102x20 + 251x19 + 14x18 + 100x17 + 238x16 + 72x15 + 20x14 + 77x13 + 84x12 + 28x11

Step 4b: XOR the result with the result from step 3b

Use the result from step 3b to perform the next XOR.

(35 ⊕ 35)x29 + (35 ⊕ 128)x28 + (69 ⊕ 6)x27 + (180 ⊕ 167)x26 + (2 ⊕ 21)x25 + (242 ⊕ 245)x24 + (67 ⊕ 168)x23 + (140 ⊕ 145)x22 + (148 ⊕ 155)x21 + (112 ⊕ 102)x20 + (144 ⊕ 251)x19 + (158 ⊕ 14)x18 + (140 ⊕ 100)x17 + (74 ⊕ 238)x16 + (131 ⊕ 72)x15 + (226 ⊕ 20)x14 + (199 ⊕ 77)x13 + (98 ⊕ 84)x12 + (0 ⊕ 28)x11

The result is:

0x29 + 163x28 + 67x27 + 19x26 + 23x25 + 7x24 + 235x23 + 29x22 + 15x21 + 22x20 + 107x19 + 144x18 + 232x17 + 164x16 + 203x15 + 246x14 + 138x13 + 54x12 + 28x11

Discard the lead 0 term to get:

163x28 + 67x27 + 19x26 + 23x25 + 7x24 + 235x23 + 29x22 + 15x21 + 22x20 + 107x19 + 144x18 + 232x17 + 164x16 + 203x15 + 246x14 + 138x13 + 54x12 + 28x11

Step 5a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 163x28. Convert 163x28 to alpha notation. According to the log antilog table, for the integer value 163, the alpha exponent is 91. Therefore 163 = α91. Multiply the generator polynomial by α91:

91 * α0)x28 + (α91 * α215)x27 + (α91 * α234)x26 + (α91 * α158)x25 + (α91 * α94)x24 + (α91 * α184)x23 + (α91 * α97)x22 + (α91 * α118)x21 + (α91 * α170)x20 + (α91 * α79)x19 + (α91 * α187)x18 + (α91 * α152)x17 + (α91 * α148)x16 + (α91 * α252)x15 + (α91 * α179)x14 + (α91 * α5)x13 + (α91 * α98)x12 + (α91 * α96)x11 + (α91 * α153)x10

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α91x28 + α(306 % 255)x27 + α(325 % 255)x26 + α249x25 + α185x24 + α(275 % 255)x23 + α188x22 + α209x21 + α(261 % 255)x20 + α170x19 + α(278 % 255)x18 + α243x17 + α239x16 + α(343 % 255)x15 + α(270 % 255)x14 + α96x13 + α189x12 + α187x11 + α244x10

The result is:

α91x28 + α51x27 + α70x26 + α249x25 + α185x24 + α20x23 + α188x22 + α209x21 + α6x20 + α170x19 + α23x18 + α243x17 + α239x16 + α88x15 + α15x14 + α96x13 + α189x12 + α187x11 + α244x10

Now, convert this to integer notation:

163x28 + 10x27 + 94x26 + 54x25 + 55x24 + 180x23 + 165x22 + 162x21 + 64x20 + 215x19 + 201x18 + 125x17 + 22x16 + 254x15 + 38x14 + 217x13 + 87x12 + 220x11 + 250x10

Step 5b: XOR the result with the result from step 4b

Use the result from step 4b to perform the next XOR.

(163 ⊕ 163)x28 + (67 ⊕ 10)x27 + (19 ⊕ 94)x26 + (23 ⊕ 54)x25 + (7 ⊕ 55)x24 + (235 ⊕ 180)x23 + (29 ⊕ 165)x22 + (15 ⊕ 162)x21 + (22 ⊕ 64)x20 + (107 ⊕ 215)x19 + (144 ⊕ 201)x18 + (232 ⊕ 125)x17 + (164 ⊕ 22)x16 + (203 ⊕ 254)x15 + (246 ⊕ 38)x14 + (138 ⊕ 217)x13 + (54 ⊕ 87)x12 + (28 ⊕ 220)x11 + (0 ⊕ 250)x10

The result is:

0x28 + 73x27 + 77x26 + 33x25 + 48x24 + 95x23 + 184x22 + 173x21 + 86x20 + 188x19 + 89x18 + 149x17 + 178x16 + 53x15 + 208x14 + 83x13 + 97x12 + 192x11 + 250x10

Discard the lead 0 term to get:

73x27 + 77x26 + 33x25 + 48x24 + 95x23 + 184x22 + 173x21 + 86x20 + 188x19 + 89x18 + 149x17 + 178x16 + 53x15 + 208x14 + 83x13 + 97x12 + 192x11 + 250x10

Step 6a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 73x27. Convert 73x27 to alpha notation. According to the log antilog table, for the integer value 73, the alpha exponent is 152. Therefore 73 = α152. Multiply the generator polynomial by α152:

152 * α0)x27 + (α152 * α215)x26 + (α152 * α234)x25 + (α152 * α158)x24 + (α152 * α94)x23 + (α152 * α184)x22 + (α152 * α97)x21 + (α152 * α118)x20 + (α152 * α170)x19 + (α152 * α79)x18 + (α152 * α187)x17 + (α152 * α152)x16 + (α152 * α148)x15 + (α152 * α252)x14 + (α152 * α179)x13 + (α152 * α5)x12 + (α152 * α98)x11 + (α152 * α96)x10 + (α152 * α153)x9

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α152x27 + α(367 % 255)x26 + α(386 % 255)x25 + α(310 % 255)x24 + α246x23 + α(336 % 255)x22 + α249x21 + α(270 % 255)x20 + α(322 % 255)x19 + α231x18 + α(339 % 255)x17 + α(304 % 255)x16 + α(300 % 255)x15 + α(404 % 255)x14 + α(331 % 255)x13 + α157x12 + α250x11 + α248x10 + α(305 % 255)x9

The result is:

α152x27 + α112x26 + α131x25 + α55x24 + α246x23 + α81x22 + α249x21 + α15x20 + α67x19 + α231x18 + α84x17 + α49x16 + α45x15 + α149x14 + α76x13 + α157x12 + α250x11 + α248x10 + α50x9

Now, convert this to integer notation:

73x27 + 129x26 + 92x25 + 160x24 + 207x23 + 231x22 + 54x21 + 38x20 + 194x19 + 245x18 + 107x17 + 140x16 + 193x15 + 164x14 + 30x13 + 213x12 + 108x11 + 27x10 + 5x9

Step 6b: XOR the result with the result from step 5b

Use the result from step 5b to perform the next XOR.

(73 ⊕ 73)x27 + (77 ⊕ 129)x26 + (33 ⊕ 92)x25 + (48 ⊕ 160)x24 + (95 ⊕ 207)x23 + (184 ⊕ 231)x22 + (173 ⊕ 54)x21 + (86 ⊕ 38)x20 + (188 ⊕ 194)x19 + (89 ⊕ 245)x18 + (149 ⊕ 107)x17 + (178 ⊕ 140)x16 + (53 ⊕ 193)x15 + (208 ⊕ 164)x14 + (83 ⊕ 30)x13 + (97 ⊕ 213)x12 + (192 ⊕ 108)x11 + (250 ⊕ 27)x10 + (0 ⊕ 5)x9

The result is:

0x27 + 204x26 + 125x25 + 144x24 + 144x23 + 95x22 + 155x21 + 112x20 + 126x19 + 172x18 + 254x17 + 62x16 + 244x15 + 116x14 + 77x13 + 180x12 + 172x11 + 225x10 + 5x9

Discard the lead 0 term to get:

204x26 + 125x25 + 144x24 + 144x23 + 95x22 + 155x21 + 112x20 + 126x19 + 172x18 + 254x17 + 62x16 + 244x15 + 116x14 + 77x13 + 180x12 + 172x11 + 225x10 + 5x9

Step 7a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 204x26. Convert 204x26 to alpha notation. According to the log antilog table, for the integer value 204, the alpha exponent is 127. Therefore 204 = α127. Multiply the generator polynomial by α127:

127 * α0)x26 + (α127 * α215)x25 + (α127 * α234)x24 + (α127 * α158)x23 + (α127 * α94)x22 + (α127 * α184)x21 + (α127 * α97)x20 + (α127 * α118)x19 + (α127 * α170)x18 + (α127 * α79)x17 + (α127 * α187)x16 + (α127 * α152)x15 + (α127 * α148)x14 + (α127 * α252)x13 + (α127 * α179)x12 + (α127 * α5)x11 + (α127 * α98)x10 + (α127 * α96)x9 + (α127 * α153)x8

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α127x26 + α(342 % 255)x25 + α(361 % 255)x24 + α(285 % 255)x23 + α221x22 + α(311 % 255)x21 + α224x20 + α245x19 + α(297 % 255)x18 + α206x17 + α(314 % 255)x16 + α(279 % 255)x15 + α(275 % 255)x14 + α(379 % 255)x13 + α(306 % 255)x12 + α132x11 + α225x10 + α223x9 + α(280 % 255)x8

The result is:

α127x26 + α87x25 + α106x24 + α30x23 + α221x22 + α56x21 + α224x20 + α245x19 + α42x18 + α206x17 + α59x16 + α24x15 + α20x14 + α124x13 + α51x12 + α132x11 + α225x10 + α223x9 + α25x8

Now, convert this to integer notation:

204x26 + 127x25 + 52x24 + 96x23 + 69x22 + 93x21 + 18x20 + 233x19 + 181x18 + 83x17 + 210x16 + 143x15 + 180x14 + 151x13 + 10x12 + 184x11 + 36x10 + 9x9 + 3x8

Step 7b: XOR the result with the result from step 6b

Use the result from step 6b to perform the next XOR.

(204 ⊕ 204)x26 + (125 ⊕ 127)x25 + (144 ⊕ 52)x24 + (144 ⊕ 96)x23 + (95 ⊕ 69)x22 + (155 ⊕ 93)x21 + (112 ⊕ 18)x20 + (126 ⊕ 233)x19 + (172 ⊕ 181)x18 + (254 ⊕ 83)x17 + (62 ⊕ 210)x16 + (244 ⊕ 143)x15 + (116 ⊕ 180)x14 + (77 ⊕ 151)x13 + (180 ⊕ 10)x12 + (172 ⊕ 184)x11 + (225 ⊕ 36)x10 + (5 ⊕ 9)x9 + (0 ⊕ 3)x8

The result is:

0x26 + 2x25 + 164x24 + 240x23 + 26x22 + 198x21 + 98x20 + 151x19 + 25x18 + 173x17 + 236x16 + 123x15 + 192x14 + 218x13 + 190x12 + 20x11 + 197x10 + 12x9 + 3x8

Discard the lead 0 term to get:

2x25 + 164x24 + 240x23 + 26x22 + 198x21 + 98x20 + 151x19 + 25x18 + 173x17 + 236x16 + 123x15 + 192x14 + 218x13 + 190x12 + 20x11 + 197x10 + 12x9 + 3x8

Step 8a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 2x25. Convert 2x25 to alpha notation. According to the log antilog table, for the integer value 2, the alpha exponent is 1. Therefore 2 = α1. Multiply the generator polynomial by α1:

1 * α0)x25 + (α1 * α215)x24 + (α1 * α234)x23 + (α1 * α158)x22 + (α1 * α94)x21 + (α1 * α184)x20 + (α1 * α97)x19 + (α1 * α118)x18 + (α1 * α170)x17 + (α1 * α79)x16 + (α1 * α187)x15 + (α1 * α152)x14 + (α1 * α148)x13 + (α1 * α252)x12 + (α1 * α179)x11 + (α1 * α5)x10 + (α1 * α98)x9 + (α1 * α96)x8 + (α1 * α153)x7

The exponents of the alphas are added together. The result is:

α1x25 + α216x24 + α235x23 + α159x22 + α95x21 + α185x20 + α98x19 + α119x18 + α171x17 + α80x16 + α188x15 + α153x14 + α149x13 + α253x12 + α180x11 + α6x10 + α99x9 + α97x8 + α154x7

Now, convert this to integer notation:

2x25 + 195x24 + 235x23 + 115x22 + 226x21 + 55x20 + 67x19 + 147x18 + 179x17 + 253x16 + 165x15 + 146x14 + 164x13 + 71x12 + 150x11 + 64x10 + 134x9 + 175x8 + 57x7

Step 8b: XOR the result with the result from step 7b

Use the result from step 7b to perform the next XOR.

(2 ⊕ 2)x25 + (164 ⊕ 195)x24 + (240 ⊕ 235)x23 + (26 ⊕ 115)x22 + (198 ⊕ 226)x21 + (98 ⊕ 55)x20 + (151 ⊕ 67)x19 + (25 ⊕ 147)x18 + (173 ⊕ 179)x17 + (236 ⊕ 253)x16 + (123 ⊕ 165)x15 + (192 ⊕ 146)x14 + (218 ⊕ 164)x13 + (190 ⊕ 71)x12 + (20 ⊕ 150)x11 + (197 ⊕ 64)x10 + (12 ⊕ 134)x9 + (3 ⊕ 175)x8 + (0 ⊕ 57)x7

The result is:

0x25 + 103x24 + 27x23 + 105x22 + 36x21 + 85x20 + 212x19 + 138x18 + 30x17 + 17x16 + 222x15 + 82x14 + 126x13 + 249x12 + 130x11 + 133x10 + 138x9 + 172x8 + 57x7

Discard the lead 0 term to get:

103x24 + 27x23 + 105x22 + 36x21 + 85x20 + 212x19 + 138x18 + 30x17 + 17x16 + 222x15 + 82x14 + 126x13 + 249x12 + 130x11 + 133x10 + 138x9 + 172x8 + 57x7

Step 9a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 103x24. Convert 103x24 to alpha notation. According to the log antilog table, for the integer value 103, the alpha exponent is 110. Therefore 103 = α110. Multiply the generator polynomial by α110:

110 * α0)x24 + (α110 * α215)x23 + (α110 * α234)x22 + (α110 * α158)x21 + (α110 * α94)x20 + (α110 * α184)x19 + (α110 * α97)x18 + (α110 * α118)x17 + (α110 * α170)x16 + (α110 * α79)x15 + (α110 * α187)x14 + (α110 * α152)x13 + (α110 * α148)x12 + (α110 * α252)x11 + (α110 * α179)x10 + (α110 * α5)x9 + (α110 * α98)x8 + (α110 * α96)x7 + (α110 * α153)x6

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α110x24 + α(325 % 255)x23 + α(344 % 255)x22 + α(268 % 255)x21 + α204x20 + α(294 % 255)x19 + α207x18 + α228x17 + α(280 % 255)x16 + α189x15 + α(297 % 255)x14 + α(262 % 255)x13 + α(258 % 255)x12 + α(362 % 255)x11 + α(289 % 255)x10 + α115x9 + α208x8 + α206x7 + α(263 % 255)x6

The result is:

α110x24 + α70x23 + α89x22 + α13x21 + α204x20 + α39x19 + α207x18 + α228x17 + α25x16 + α189x15 + α42x14 + α7x13 + α3x12 + α107x11 + α34x10 + α115x9 + α208x8 + α206x7 + α8x6

Now, convert this to integer notation:

103x24 + 94x23 + 225x22 + 135x21 + 221x20 + 53x19 + 166x18 + 61x17 + 3x16 + 87x15 + 181x14 + 128x13 + 8x12 + 104x11 + 78x10 + 124x9 + 81x8 + 83x7 + 29x6

Step 9b: XOR the result with the result from step 8b

Use the result from step 8b to perform the next XOR.

(103 ⊕ 103)x24 + (27 ⊕ 94)x23 + (105 ⊕ 225)x22 + (36 ⊕ 135)x21 + (85 ⊕ 221)x20 + (212 ⊕ 53)x19 + (138 ⊕ 166)x18 + (30 ⊕ 61)x17 + (17 ⊕ 3)x16 + (222 ⊕ 87)x15 + (82 ⊕ 181)x14 + (126 ⊕ 128)x13 + (249 ⊕ 8)x12 + (130 ⊕ 104)x11 + (133 ⊕ 78)x10 + (138 ⊕ 124)x9 + (172 ⊕ 81)x8 + (57 ⊕ 83)x7 + (0 ⊕ 29)x6

The result is:

0x24 + 69x23 + 136x22 + 163x21 + 136x20 + 225x19 + 44x18 + 35x17 + 18x16 + 137x15 + 231x14 + 254x13 + 241x12 + 234x11 + 203x10 + 246x9 + 253x8 + 106x7 + 29x6

Discard the lead 0 term to get:

69x23 + 136x22 + 163x21 + 136x20 + 225x19 + 44x18 + 35x17 + 18x16 + 137x15 + 231x14 + 254x13 + 241x12 + 234x11 + 203x10 + 246x9 + 253x8 + 106x7 + 29x6

Step 10a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 69x23. Convert 69x23 to alpha notation. According to the log antilog table, for the integer value 69, the alpha exponent is 221. Therefore 69 = α221. Multiply the generator polynomial by α221:

221 * α0)x23 + (α221 * α215)x22 + (α221 * α234)x21 + (α221 * α158)x20 + (α221 * α94)x19 + (α221 * α184)x18 + (α221 * α97)x17 + (α221 * α118)x16 + (α221 * α170)x15 + (α221 * α79)x14 + (α221 * α187)x13 + (α221 * α152)x12 + (α221 * α148)x11 + (α221 * α252)x10 + (α221 * α179)x9 + (α221 * α5)x8 + (α221 * α98)x7 + (α221 * α96)x6 + (α221 * α153)x5

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α221x23 + α(436 % 255)x22 + α(455 % 255)x21 + α(379 % 255)x20 + α(315 % 255)x19 + α(405 % 255)x18 + α(318 % 255)x17 + α(339 % 255)x16 + α(391 % 255)x15 + α(300 % 255)x14 + α(408 % 255)x13 + α(373 % 255)x12 + α(369 % 255)x11 + α(473 % 255)x10 + α(400 % 255)x9 + α226x8 + α(319 % 255)x7 + α(317 % 255)x6 + α(374 % 255)x5

The result is:

α221x23 + α181x22 + α200x21 + α124x20 + α60x19 + α150x18 + α63x17 + α84x16 + α136x15 + α45x14 + α153x13 + α118x12 + α114x11 + α218x10 + α145x9 + α226x8 + α64x7 + α62x6 + α119x5

Now, convert this to integer notation:

69x23 + 49x22 + 28x21 + 151x20 + 185x19 + 85x18 + 161x17 + 107x16 + 79x15 + 193x14 + 146x13 + 199x12 + 62x11 + 43x10 + 77x9 + 72x8 + 95x7 + 222x6 + 147x5

Step 10b: XOR the result with the result from step 9b

Use the result from step 9b to perform the next XOR.

(69 ⊕ 69)x23 + (136 ⊕ 49)x22 + (163 ⊕ 28)x21 + (136 ⊕ 151)x20 + (225 ⊕ 185)x19 + (44 ⊕ 85)x18 + (35 ⊕ 161)x17 + (18 ⊕ 107)x16 + (137 ⊕ 79)x15 + (231 ⊕ 193)x14 + (254 ⊕ 146)x13 + (241 ⊕ 199)x12 + (234 ⊕ 62)x11 + (203 ⊕ 43)x10 + (246 ⊕ 77)x9 + (253 ⊕ 72)x8 + (106 ⊕ 95)x7 + (29 ⊕ 222)x6 + (0 ⊕ 147)x5

The result is:

0x23 + 185x22 + 191x21 + 31x20 + 88x19 + 121x18 + 130x17 + 121x16 + 198x15 + 38x14 + 108x13 + 54x12 + 212x11 + 224x10 + 187x9 + 181x8 + 53x7 + 195x6 + 147x5

Discard the lead 0 term to get:

185x22 + 191x21 + 31x20 + 88x19 + 121x18 + 130x17 + 121x16 + 198x15 + 38x14 + 108x13 + 54x12 + 212x11 + 224x10 + 187x9 + 181x8 + 53x7 + 195x6 + 147x5

Step 11a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 185x22. Convert 185x22 to alpha notation. According to the log antilog table, for the integer value 185, the alpha exponent is 60. Therefore 185 = α60. Multiply the generator polynomial by α60:

60 * α0)x22 + (α60 * α215)x21 + (α60 * α234)x20 + (α60 * α158)x19 + (α60 * α94)x18 + (α60 * α184)x17 + (α60 * α97)x16 + (α60 * α118)x15 + (α60 * α170)x14 + (α60 * α79)x13 + (α60 * α187)x12 + (α60 * α152)x11 + (α60 * α148)x10 + (α60 * α252)x9 + (α60 * α179)x8 + (α60 * α5)x7 + (α60 * α98)x6 + (α60 * α96)x5 + (α60 * α153)x4

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α60x22 + α(275 % 255)x21 + α(294 % 255)x20 + α218x19 + α154x18 + α244x17 + α157x16 + α178x15 + α230x14 + α139x13 + α247x12 + α212x11 + α208x10 + α(312 % 255)x9 + α239x8 + α65x7 + α158x6 + α156x5 + α213x4

The result is:

α60x22 + α20x21 + α39x20 + α218x19 + α154x18 + α244x17 + α157x16 + α178x15 + α230x14 + α139x13 + α247x12 + α212x11 + α208x10 + α57x9 + α239x8 + α65x7 + α158x6 + α156x5 + α213x4

Now, convert this to integer notation:

185x22 + 180x21 + 53x20 + 43x19 + 57x18 + 250x17 + 213x16 + 171x15 + 244x14 + 66x13 + 131x12 + 121x11 + 81x10 + 186x9 + 22x8 + 190x7 + 183x6 + 228x5 + 242x4

Step 11b: XOR the result with the result from step 10b

Use the result from step 10b to perform the next XOR.

(185 ⊕ 185)x22 + (191 ⊕ 180)x21 + (31 ⊕ 53)x20 + (88 ⊕ 43)x19 + (121 ⊕ 57)x18 + (130 ⊕ 250)x17 + (121 ⊕ 213)x16 + (198 ⊕ 171)x15 + (38 ⊕ 244)x14 + (108 ⊕ 66)x13 + (54 ⊕ 131)x12 + (212 ⊕ 121)x11 + (224 ⊕ 81)x10 + (187 ⊕ 186)x9 + (181 ⊕ 22)x8 + (53 ⊕ 190)x7 + (195 ⊕ 183)x6 + (147 ⊕ 228)x5 + (0 ⊕ 242)x4

The result is:

0x22 + 11x21 + 42x20 + 115x19 + 64x18 + 120x17 + 172x16 + 109x15 + 210x14 + 46x13 + 181x12 + 173x11 + 177x10 + 1x9 + 163x8 + 139x7 + 116x6 + 119x5 + 242x4

Discard the lead 0 term to get:

11x21 + 42x20 + 115x19 + 64x18 + 120x17 + 172x16 + 109x15 + 210x14 + 46x13 + 181x12 + 173x11 + 177x10 + 1x9 + 163x8 + 139x7 + 116x6 + 119x5 + 242x4

Step 12a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 11x21. Convert 11x21 to alpha notation. According to the log antilog table, for the integer value 11, the alpha exponent is 238. Therefore 11 = α238. Multiply the generator polynomial by α238:

238 * α0)x21 + (α238 * α215)x20 + (α238 * α234)x19 + (α238 * α158)x18 + (α238 * α94)x17 + (α238 * α184)x16 + (α238 * α97)x15 + (α238 * α118)x14 + (α238 * α170)x13 + (α238 * α79)x12 + (α238 * α187)x11 + (α238 * α152)x10 + (α238 * α148)x9 + (α238 * α252)x8 + (α238 * α179)x7 + (α238 * α5)x6 + (α238 * α98)x5 + (α238 * α96)x4 + (α238 * α153)x3

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α238x21 + α(453 % 255)x20 + α(472 % 255)x19 + α(396 % 255)x18 + α(332 % 255)x17 + α(422 % 255)x16 + α(335 % 255)x15 + α(356 % 255)x14 + α(408 % 255)x13 + α(317 % 255)x12 + α(425 % 255)x11 + α(390 % 255)x10 + α(386 % 255)x9 + α(490 % 255)x8 + α(417 % 255)x7 + α243x6 + α(336 % 255)x5 + α(334 % 255)x4 + α(391 % 255)x3

The result is:

α238x21 + α198x20 + α217x19 + α141x18 + α77x17 + α167x16 + α80x15 + α101x14 + α153x13 + α62x12 + α170x11 + α135x10 + α131x9 + α235x8 + α162x7 + α243x6 + α81x5 + α79x4 + α136x3

Now, convert this to integer notation:

11x21 + 7x20 + 155x19 + 21x18 + 60x17 + 126x16 + 253x15 + 34x14 + 146x13 + 222x12 + 215x11 + 169x10 + 92x9 + 235x8 + 191x7 + 125x6 + 231x5 + 240x4 + 79x3

Step 12b: XOR the result with the result from step 11b

Use the result from step 11b to perform the next XOR.

(11 ⊕ 11)x21 + (42 ⊕ 7)x20 + (115 ⊕ 155)x19 + (64 ⊕ 21)x18 + (120 ⊕ 60)x17 + (172 ⊕ 126)x16 + (109 ⊕ 253)x15 + (210 ⊕ 34)x14 + (46 ⊕ 146)x13 + (181 ⊕ 222)x12 + (173 ⊕ 215)x11 + (177 ⊕ 169)x10 + (1 ⊕ 92)x9 + (163 ⊕ 235)x8 + (139 ⊕ 191)x7 + (116 ⊕ 125)x6 + (119 ⊕ 231)x5 + (242 ⊕ 240)x4 + (0 ⊕ 79)x3

The result is:

0x21 + 45x20 + 232x19 + 85x18 + 68x17 + 210x16 + 144x15 + 240x14 + 188x13 + 107x12 + 122x11 + 24x10 + 93x9 + 72x8 + 52x7 + 9x6 + 144x5 + 2x4 + 79x3

Discard the lead 0 term to get:

45x20 + 232x19 + 85x18 + 68x17 + 210x16 + 144x15 + 240x14 + 188x13 + 107x12 + 122x11 + 24x10 + 93x9 + 72x8 + 52x7 + 9x6 + 144x5 + 2x4 + 79x3

Step 13a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 45x20. Convert 45x20 to alpha notation. According to the log antilog table, for the integer value 45, the alpha exponent is 18. Therefore 45 = α18. Multiply the generator polynomial by α18:

18 * α0)x20 + (α18 * α215)x19 + (α18 * α234)x18 + (α18 * α158)x17 + (α18 * α94)x16 + (α18 * α184)x15 + (α18 * α97)x14 + (α18 * α118)x13 + (α18 * α170)x12 + (α18 * α79)x11 + (α18 * α187)x10 + (α18 * α152)x9 + (α18 * α148)x8 + (α18 * α252)x7 + (α18 * α179)x6 + (α18 * α5)x5 + (α18 * α98)x4 + (α18 * α96)x3 + (α18 * α153)x2

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α18x20 + α233x19 + α252x18 + α176x17 + α112x16 + α202x15 + α115x14 + α136x13 + α188x12 + α97x11 + α205x10 + α170x9 + α166x8 + α(270 % 255)x7 + α197x6 + α23x5 + α116x4 + α114x3 + α171x2

The result is:

α18x20 + α233x19 + α252x18 + α176x17 + α112x16 + α202x15 + α115x14 + α136x13 + α188x12 + α97x11 + α205x10 + α170x9 + α166x8 + α15x7 + α197x6 + α23x5 + α116x4 + α114x3 + α171x2

Now, convert this to integer notation:

45x20 + 243x19 + 173x18 + 227x17 + 129x16 + 112x15 + 124x14 + 79x13 + 165x12 + 175x11 + 167x10 + 215x9 + 63x8 + 38x7 + 141x6 + 201x5 + 248x4 + 62x3 + 179x2

Step 13b: XOR the result with the result from step 12b

Use the result from step 12b to perform the next XOR.

(45 ⊕ 45)x20 + (232 ⊕ 243)x19 + (85 ⊕ 173)x18 + (68 ⊕ 227)x17 + (210 ⊕ 129)x16 + (144 ⊕ 112)x15 + (240 ⊕ 124)x14 + (188 ⊕ 79)x13 + (107 ⊕ 165)x12 + (122 ⊕ 175)x11 + (24 ⊕ 167)x10 + (93 ⊕ 215)x9 + (72 ⊕ 63)x8 + (52 ⊕ 38)x7 + (9 ⊕ 141)x6 + (144 ⊕ 201)x5 + (2 ⊕ 248)x4 + (79 ⊕ 62)x3 + (0 ⊕ 179)x2

The result is:

0x20 + 27x19 + 248x18 + 167x17 + 83x16 + 224x15 + 140x14 + 243x13 + 206x12 + 213x11 + 191x10 + 138x9 + 119x8 + 18x7 + 132x6 + 89x5 + 250x4 + 113x3 + 179x2

Discard the lead 0 term to get:

27x19 + 248x18 + 167x17 + 83x16 + 224x15 + 140x14 + 243x13 + 206x12 + 213x11 + 191x10 + 138x9 + 119x8 + 18x7 + 132x6 + 89x5 + 250x4 + 113x3 + 179x2

Step 14a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 27x19. Convert 27x19 to alpha notation. According to the log antilog table, for the integer value 27, the alpha exponent is 248. Therefore 27 = α248. Multiply the generator polynomial by α248:

248 * α0)x19 + (α248 * α215)x18 + (α248 * α234)x17 + (α248 * α158)x16 + (α248 * α94)x15 + (α248 * α184)x14 + (α248 * α97)x13 + (α248 * α118)x12 + (α248 * α170)x11 + (α248 * α79)x10 + (α248 * α187)x9 + (α248 * α152)x8 + (α248 * α148)x7 + (α248 * α252)x6 + (α248 * α179)x5 + (α248 * α5)x4 + (α248 * α98)x3 + (α248 * α96)x2 + (α248 * α153)x1

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α248x19 + α(463 % 255)x18 + α(482 % 255)x17 + α(406 % 255)x16 + α(342 % 255)x15 + α(432 % 255)x14 + α(345 % 255)x13 + α(366 % 255)x12 + α(418 % 255)x11 + α(327 % 255)x10 + α(435 % 255)x9 + α(400 % 255)x8 + α(396 % 255)x7 + α(500 % 255)x6 + α(427 % 255)x5 + α253x4 + α(346 % 255)x3 + α(344 % 255)x2 + α(401 % 255)x1

The result is:

α248x19 + α208x18 + α227x17 + α151x16 + α87x15 + α177x14 + α90x13 + α111x12 + α163x11 + α72x10 + α180x9 + α145x8 + α141x7 + α245x6 + α172x5 + α253x4 + α91x3 + α89x2 + α146x1

Now, convert this to integer notation:

27x19 + 81x18 + 144x17 + 170x16 + 127x15 + 219x14 + 223x13 + 206x12 + 99x11 + 101x10 + 150x9 + 77x8 + 21x7 + 233x6 + 123x5 + 71x4 + 163x3 + 225x2 + 154x1

Step 14b: XOR the result with the result from step 13b

Use the result from step 13b to perform the next XOR.

(27 ⊕ 27)x19 + (248 ⊕ 81)x18 + (167 ⊕ 144)x17 + (83 ⊕ 170)x16 + (224 ⊕ 127)x15 + (140 ⊕ 219)x14 + (243 ⊕ 223)x13 + (206 ⊕ 206)x12 + (213 ⊕ 99)x11 + (191 ⊕ 101)x10 + (138 ⊕ 150)x9 + (119 ⊕ 77)x8 + (18 ⊕ 21)x7 + (132 ⊕ 233)x6 + (89 ⊕ 123)x5 + (250 ⊕ 71)x4 + (113 ⊕ 163)x3 + (179 ⊕ 225)x2 + (0 ⊕ 154)x1

The result is:

0x19 + 169x18 + 55x17 + 249x16 + 159x15 + 87x14 + 44x13 + 0x12 + 182x11 + 218x10 + 28x9 + 58x8 + 7x7 + 109x6 + 34x5 + 189x4 + 210x3 + 82x2 + 154x1

Discard the lead 0 term to get:

169x18 + 55x17 + 249x16 + 159x15 + 87x14 + 44x13 + 0x12 + 182x11 + 218x10 + 28x9 + 58x8 + 7x7 + 109x6 + 34x5 + 189x4 + 210x3 + 82x2 + 154x1

Step 15a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 169x18. Convert 169x18 to alpha notation. According to the log antilog table, for the integer value 169, the alpha exponent is 135. Therefore 169 = α135. Multiply the generator polynomial by α135:

135 * α0)x18 + (α135 * α215)x17 + (α135 * α234)x16 + (α135 * α158)x15 + (α135 * α94)x14 + (α135 * α184)x13 + (α135 * α97)x12 + (α135 * α118)x11 + (α135 * α170)x10 + (α135 * α79)x9 + (α135 * α187)x8 + (α135 * α152)x7 + (α135 * α148)x6 + (α135 * α252)x5 + (α135 * α179)x4 + (α135 * α5)x3 + (α135 * α98)x2 + (α135 * α96)x1 + (α135 * α153)x0

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α135x18 + α(350 % 255)x17 + α(369 % 255)x16 + α(293 % 255)x15 + α229x14 + α(319 % 255)x13 + α232x12 + α253x11 + α(305 % 255)x10 + α214x9 + α(322 % 255)x8 + α(287 % 255)x7 + α(283 % 255)x6 + α(387 % 255)x5 + α(314 % 255)x4 + α140x3 + α233x2 + α231x1 + α(288 % 255)x0

The result is:

α135x18 + α95x17 + α114x16 + α38x15 + α229x14 + α64x13 + α232x12 + α253x11 + α50x10 + α214x9 + α67x8 + α32x7 + α28x6 + α132x5 + α59x4 + α140x3 + α233x2 + α231x1 + α33x0

Now, convert this to integer notation:

169x18 + 226x17 + 62x16 + 148x15 + 122x14 + 95x13 + 247x12 + 71x11 + 5x10 + 249x9 + 194x8 + 157x7 + 24x6 + 184x5 + 210x4 + 132x3 + 243x2 + 245x1 + 39

Step 15b: XOR the result with the result from step 14b

Use the result from step 14b to perform the next XOR.

(169 ⊕ 169)x18 + (55 ⊕ 226)x17 + (249 ⊕ 62)x16 + (159 ⊕ 148)x15 + (87 ⊕ 122)x14 + (44 ⊕ 95)x13 + (0 ⊕ 247)x12 + (182 ⊕ 71)x11 + (218 ⊕ 5)x10 + (28 ⊕ 249)x9 + (58 ⊕ 194)x8 + (7 ⊕ 157)x7 + (109 ⊕ 24)x6 + (34 ⊕ 184)x5 + (189 ⊕ 210)x4 + (210 ⊕ 132)x3 + (82 ⊕ 243)x2 + (154 ⊕ 245)x1 + (0 ⊕ 39)x0

The result is:

0x18 + 213x17 + 199x16 + 11x15 + 45x14 + 115x13 + 247x12 + 241x11 + 223x10 + 229x9 + 248x8 + 154x7 + 117x6 + 154x5 + 111x4 + 86x3 + 161x2 + 111x1 + 39

Discard the lead 0 term to get:

213x17 + 199x16 + 11x15 + 45x14 + 115x13 + 247x12 + 241x11 + 223x10 + 229x9 + 248x8 + 154x7 + 117x6 + 154x5 + 111x4 + 86x3 + 161x2 + 111x1 + 39

Use the terms of the remainder as the error correction codewords

The division has been performed 15 times, which is the number of terms in the message polynomial. This means that the division is complete and the terms of the above polynomial are the error correction codewords to use for the original message polynomial:

213  199  11  45  115  247  241  223  229  248  154  117  154  111  86  161  111  39