Show polynomial division steps

This page demonstrates how to generate ECC blocks by performing polynomial divison on a message polynomial. Just enter the coefficients of the message polynomial and the desired number of ECC blocks, then click Perform Division.

If the steps are unclear, please read the error correction generation section of the tutorial, which includes a detailed explanation of these steps.


(example: 32,91,11,120,209,114,220,77,67,64,236,17,236 )

(example: 13 )

Polynomial Division Steps

The first step to the division is to prepare the message polynomial for the division. The full message polynomial is:

64x30 + 2x29 + 149x28 + 2x27 + 6x26 + 2x25 + 22x24 + 2x23 + 118x22 + 2x21 + 86x20 + 2x19 + 68x18 + 2x17 + 247x16 + 2x15 + 87x14 + 2x13 + 66x12 + 2x11 + 16x10 + 2x9 + 236x8 + 2x7 + 17x6 + 2x5 + 236x4 + 2x3 + 17x2 + 2x1 + 236

To make sure that the exponent of the lead term doesn't become too small during the division, multiply the message polynomial by xn where n is the number of error correction codewords that are needed. In this case n is 10, for 10 error correction codewords, so multiply the message polynomial by x10, which gives us:

64x40 + 2x39 + 149x38 + 2x37 + 6x36 + 2x35 + 22x34 + 2x33 + 118x32 + 2x31 + 86x30 + 2x29 + 68x28 + 2x27 + 247x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

The lead term of the generator polynomial should also have the same exponent, so multiply by x30 to get

α0x40 + α251x39 + α67x38 + α46x37 + α61x36 + α118x35 + α70x34 + α64x33 + α94x32 + α32x31 + α45x30

Now it is possible to perform the repeated division steps. The number of steps in the division must equal the number of terms in the message polynomial. In this case, the division will take 31 steps to complete. This will result in a remainder that has 10 terms. These terms will be the 10 error correction codewords that are required.

Step 1a: Multiply the Generator Polynomial by the Lead Term of the Message Polynomial

The first step is to multiply the generator polynomial by the lead term of the message polynomial. The lead term in this case is 64x40. Since alpha notation makes it easier to perform the multiplication, it is recommended to convert 64x40 to alpha notation. According to the log antilog table, for the integer value 64, the alpha exponent is 6. Therefore 64 = α6. Multiply the generator polynomial by α6:

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α6x40 + α(257 % 255)x39 + α73x38 + α52x37 + α67x36 + α124x35 + α76x34 + α70x33 + α100x32 + α38x31 + α51x30

The result is:

α6x40 + α2x39 + α73x38 + α52x37 + α67x36 + α124x35 + α76x34 + α70x33 + α100x32 + α38x31 + α51x30

Now, convert this to integer notation:

64x40 + 4x39 + 202x38 + 20x37 + 194x36 + 151x35 + 30x34 + 94x33 + 17x32 + 148x31 + 10x30

Step 1b: XOR the result with the message polynomial

Since this is the first division step, XOR the result from 1a with the message polynomial.

(64 ⊕ 64)x40 + (2 ⊕ 4)x39 + (149 ⊕ 202)x38 + (2 ⊕ 20)x37 + (6 ⊕ 194)x36 + (2 ⊕ 151)x35 + (22 ⊕ 30)x34 + (2 ⊕ 94)x33 + (118 ⊕ 17)x32 + (2 ⊕ 148)x31 + (86 ⊕ 10)x30 + (2 ⊕ 0)x29 + (68 ⊕ 0)x28 + (2 ⊕ 0)x27 + (247 ⊕ 0)x26 + (2 ⊕ 0)x25 + (87 ⊕ 0)x24 + (2 ⊕ 0)x23 + (66 ⊕ 0)x22 + (2 ⊕ 0)x21 + (16 ⊕ 0)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x40 + 6x39 + 95x38 + 22x37 + 196x36 + 149x35 + 8x34 + 92x33 + 103x32 + 150x31 + 92x30 + 2x29 + 68x28 + 2x27 + 247x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

6x39 + 95x38 + 22x37 + 196x36 + 149x35 + 8x34 + 92x33 + 103x32 + 150x31 + 92x30 + 2x29 + 68x28 + 2x27 + 247x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 2a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 6x39. Convert 6x39 to alpha notation. According to the log antilog table, for the integer value 6, the alpha exponent is 26. Therefore 6 = α26. Multiply the generator polynomial by α26:

26 * α0)x39 + (α26 * α251)x38 + (α26 * α67)x37 + (α26 * α46)x36 + (α26 * α61)x35 + (α26 * α118)x34 + (α26 * α70)x33 + (α26 * α64)x32 + (α26 * α94)x31 + (α26 * α32)x30 + (α26 * α45)x29

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α26x39 + α(277 % 255)x38 + α93x37 + α72x36 + α87x35 + α144x34 + α96x33 + α90x32 + α120x31 + α58x30 + α71x29

The result is:

α26x39 + α22x38 + α93x37 + α72x36 + α87x35 + α144x34 + α96x33 + α90x32 + α120x31 + α58x30 + α71x29

Now, convert this to integer notation:

6x39 + 234x38 + 182x37 + 101x36 + 127x35 + 168x34 + 217x33 + 223x32 + 59x31 + 105x30 + 188x29

Step 2b: XOR the result with the result from step 1b

Use the result from step 1b to perform the next XOR.

(6 ⊕ 6)x39 + (95 ⊕ 234)x38 + (22 ⊕ 182)x37 + (196 ⊕ 101)x36 + (149 ⊕ 127)x35 + (8 ⊕ 168)x34 + (92 ⊕ 217)x33 + (103 ⊕ 223)x32 + (150 ⊕ 59)x31 + (92 ⊕ 105)x30 + (2 ⊕ 188)x29 + (68 ⊕ 0)x28 + (2 ⊕ 0)x27 + (247 ⊕ 0)x26 + (2 ⊕ 0)x25 + (87 ⊕ 0)x24 + (2 ⊕ 0)x23 + (66 ⊕ 0)x22 + (2 ⊕ 0)x21 + (16 ⊕ 0)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x39 + 181x38 + 160x37 + 161x36 + 234x35 + 160x34 + 133x33 + 184x32 + 173x31 + 53x30 + 190x29 + 68x28 + 2x27 + 247x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

181x38 + 160x37 + 161x36 + 234x35 + 160x34 + 133x33 + 184x32 + 173x31 + 53x30 + 190x29 + 68x28 + 2x27 + 247x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 3a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 181x38. Convert 181x38 to alpha notation. According to the log antilog table, for the integer value 181, the alpha exponent is 42. Therefore 181 = α42. Multiply the generator polynomial by α42:

42 * α0)x38 + (α42 * α251)x37 + (α42 * α67)x36 + (α42 * α46)x35 + (α42 * α61)x34 + (α42 * α118)x33 + (α42 * α70)x32 + (α42 * α64)x31 + (α42 * α94)x30 + (α42 * α32)x29 + (α42 * α45)x28

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α42x38 + α(293 % 255)x37 + α109x36 + α88x35 + α103x34 + α160x33 + α112x32 + α106x31 + α136x30 + α74x29 + α87x28

The result is:

α42x38 + α38x37 + α109x36 + α88x35 + α103x34 + α160x33 + α112x32 + α106x31 + α136x30 + α74x29 + α87x28

Now, convert this to integer notation:

181x38 + 148x37 + 189x36 + 254x35 + 136x34 + 230x33 + 129x32 + 52x31 + 79x30 + 137x29 + 127x28

Step 3b: XOR the result with the result from step 2b

Use the result from step 2b to perform the next XOR.

(181 ⊕ 181)x38 + (160 ⊕ 148)x37 + (161 ⊕ 189)x36 + (234 ⊕ 254)x35 + (160 ⊕ 136)x34 + (133 ⊕ 230)x33 + (184 ⊕ 129)x32 + (173 ⊕ 52)x31 + (53 ⊕ 79)x30 + (190 ⊕ 137)x29 + (68 ⊕ 127)x28 + (2 ⊕ 0)x27 + (247 ⊕ 0)x26 + (2 ⊕ 0)x25 + (87 ⊕ 0)x24 + (2 ⊕ 0)x23 + (66 ⊕ 0)x22 + (2 ⊕ 0)x21 + (16 ⊕ 0)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x38 + 52x37 + 28x36 + 20x35 + 40x34 + 99x33 + 57x32 + 153x31 + 122x30 + 55x29 + 59x28 + 2x27 + 247x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

52x37 + 28x36 + 20x35 + 40x34 + 99x33 + 57x32 + 153x31 + 122x30 + 55x29 + 59x28 + 2x27 + 247x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 4a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 52x37. Convert 52x37 to alpha notation. According to the log antilog table, for the integer value 52, the alpha exponent is 106. Therefore 52 = α106. Multiply the generator polynomial by α106:

106 * α0)x37 + (α106 * α251)x36 + (α106 * α67)x35 + (α106 * α46)x34 + (α106 * α61)x33 + (α106 * α118)x32 + (α106 * α70)x31 + (α106 * α64)x30 + (α106 * α94)x29 + (α106 * α32)x28 + (α106 * α45)x27

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α106x37 + α(357 % 255)x36 + α173x35 + α152x34 + α167x33 + α224x32 + α176x31 + α170x30 + α200x29 + α138x28 + α151x27

The result is:

α106x37 + α102x36 + α173x35 + α152x34 + α167x33 + α224x32 + α176x31 + α170x30 + α200x29 + α138x28 + α151x27

Now, convert this to integer notation:

52x37 + 68x36 + 246x35 + 73x34 + 126x33 + 18x32 + 227x31 + 215x30 + 28x29 + 33x28 + 170x27

Step 4b: XOR the result with the result from step 3b

Use the result from step 3b to perform the next XOR.

(52 ⊕ 52)x37 + (28 ⊕ 68)x36 + (20 ⊕ 246)x35 + (40 ⊕ 73)x34 + (99 ⊕ 126)x33 + (57 ⊕ 18)x32 + (153 ⊕ 227)x31 + (122 ⊕ 215)x30 + (55 ⊕ 28)x29 + (59 ⊕ 33)x28 + (2 ⊕ 170)x27 + (247 ⊕ 0)x26 + (2 ⊕ 0)x25 + (87 ⊕ 0)x24 + (2 ⊕ 0)x23 + (66 ⊕ 0)x22 + (2 ⊕ 0)x21 + (16 ⊕ 0)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x37 + 88x36 + 226x35 + 97x34 + 29x33 + 43x32 + 122x31 + 173x30 + 43x29 + 26x28 + 168x27 + 247x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

88x36 + 226x35 + 97x34 + 29x33 + 43x32 + 122x31 + 173x30 + 43x29 + 26x28 + 168x27 + 247x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 5a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 88x36. Convert 88x36 to alpha notation. According to the log antilog table, for the integer value 88, the alpha exponent is 241. Therefore 88 = α241. Multiply the generator polynomial by α241:

241 * α0)x36 + (α241 * α251)x35 + (α241 * α67)x34 + (α241 * α46)x33 + (α241 * α61)x32 + (α241 * α118)x31 + (α241 * α70)x30 + (α241 * α64)x29 + (α241 * α94)x28 + (α241 * α32)x27 + (α241 * α45)x26

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α241x36 + α(492 % 255)x35 + α(308 % 255)x34 + α(287 % 255)x33 + α(302 % 255)x32 + α(359 % 255)x31 + α(311 % 255)x30 + α(305 % 255)x29 + α(335 % 255)x28 + α(273 % 255)x27 + α(286 % 255)x26

The result is:

α241x36 + α237x35 + α53x34 + α32x33 + α47x32 + α104x31 + α56x30 + α50x29 + α80x28 + α18x27 + α31x26

Now, convert this to integer notation:

88x36 + 139x35 + 40x34 + 157x33 + 35x32 + 13x31 + 93x30 + 5x29 + 253x28 + 45x27 + 192x26

Step 5b: XOR the result with the result from step 4b

Use the result from step 4b to perform the next XOR.

(88 ⊕ 88)x36 + (226 ⊕ 139)x35 + (97 ⊕ 40)x34 + (29 ⊕ 157)x33 + (43 ⊕ 35)x32 + (122 ⊕ 13)x31 + (173 ⊕ 93)x30 + (43 ⊕ 5)x29 + (26 ⊕ 253)x28 + (168 ⊕ 45)x27 + (247 ⊕ 192)x26 + (2 ⊕ 0)x25 + (87 ⊕ 0)x24 + (2 ⊕ 0)x23 + (66 ⊕ 0)x22 + (2 ⊕ 0)x21 + (16 ⊕ 0)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x36 + 105x35 + 73x34 + 128x33 + 8x32 + 119x31 + 240x30 + 46x29 + 231x28 + 133x27 + 55x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

105x35 + 73x34 + 128x33 + 8x32 + 119x31 + 240x30 + 46x29 + 231x28 + 133x27 + 55x26 + 2x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 6a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 105x35. Convert 105x35 to alpha notation. According to the log antilog table, for the integer value 105, the alpha exponent is 58. Therefore 105 = α58. Multiply the generator polynomial by α58:

58 * α0)x35 + (α58 * α251)x34 + (α58 * α67)x33 + (α58 * α46)x32 + (α58 * α61)x31 + (α58 * α118)x30 + (α58 * α70)x29 + (α58 * α64)x28 + (α58 * α94)x27 + (α58 * α32)x26 + (α58 * α45)x25

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α58x35 + α(309 % 255)x34 + α125x33 + α104x32 + α119x31 + α176x30 + α128x29 + α122x28 + α152x27 + α90x26 + α103x25

The result is:

α58x35 + α54x34 + α125x33 + α104x32 + α119x31 + α176x30 + α128x29 + α122x28 + α152x27 + α90x26 + α103x25

Now, convert this to integer notation:

105x35 + 80x34 + 51x33 + 13x32 + 147x31 + 227x30 + 133x29 + 236x28 + 73x27 + 223x26 + 136x25

Step 6b: XOR the result with the result from step 5b

Use the result from step 5b to perform the next XOR.

(105 ⊕ 105)x35 + (73 ⊕ 80)x34 + (128 ⊕ 51)x33 + (8 ⊕ 13)x32 + (119 ⊕ 147)x31 + (240 ⊕ 227)x30 + (46 ⊕ 133)x29 + (231 ⊕ 236)x28 + (133 ⊕ 73)x27 + (55 ⊕ 223)x26 + (2 ⊕ 136)x25 + (87 ⊕ 0)x24 + (2 ⊕ 0)x23 + (66 ⊕ 0)x22 + (2 ⊕ 0)x21 + (16 ⊕ 0)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x35 + 25x34 + 179x33 + 5x32 + 228x31 + 19x30 + 171x29 + 11x28 + 204x27 + 232x26 + 138x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

25x34 + 179x33 + 5x32 + 228x31 + 19x30 + 171x29 + 11x28 + 204x27 + 232x26 + 138x25 + 87x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 7a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 25x34. Convert 25x34 to alpha notation. According to the log antilog table, for the integer value 25, the alpha exponent is 193. Therefore 25 = α193. Multiply the generator polynomial by α193:

193 * α0)x34 + (α193 * α251)x33 + (α193 * α67)x32 + (α193 * α46)x31 + (α193 * α61)x30 + (α193 * α118)x29 + (α193 * α70)x28 + (α193 * α64)x27 + (α193 * α94)x26 + (α193 * α32)x25 + (α193 * α45)x24

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α193x34 + α(444 % 255)x33 + α(260 % 255)x32 + α239x31 + α254x30 + α(311 % 255)x29 + α(263 % 255)x28 + α(257 % 255)x27 + α(287 % 255)x26 + α225x25 + α238x24

The result is:

α193x34 + α189x33 + α5x32 + α239x31 + α254x30 + α56x29 + α8x28 + α2x27 + α32x26 + α225x25 + α238x24

Now, convert this to integer notation:

25x34 + 87x33 + 32x32 + 22x31 + 142x30 + 93x29 + 29x28 + 4x27 + 157x26 + 36x25 + 11x24

Step 7b: XOR the result with the result from step 6b

Use the result from step 6b to perform the next XOR.

(25 ⊕ 25)x34 + (179 ⊕ 87)x33 + (5 ⊕ 32)x32 + (228 ⊕ 22)x31 + (19 ⊕ 142)x30 + (171 ⊕ 93)x29 + (11 ⊕ 29)x28 + (204 ⊕ 4)x27 + (232 ⊕ 157)x26 + (138 ⊕ 36)x25 + (87 ⊕ 11)x24 + (2 ⊕ 0)x23 + (66 ⊕ 0)x22 + (2 ⊕ 0)x21 + (16 ⊕ 0)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x34 + 228x33 + 37x32 + 242x31 + 157x30 + 246x29 + 22x28 + 200x27 + 117x26 + 174x25 + 92x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

228x33 + 37x32 + 242x31 + 157x30 + 246x29 + 22x28 + 200x27 + 117x26 + 174x25 + 92x24 + 2x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 8a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 228x33. Convert 228x33 to alpha notation. According to the log antilog table, for the integer value 228, the alpha exponent is 156. Therefore 228 = α156. Multiply the generator polynomial by α156:

156 * α0)x33 + (α156 * α251)x32 + (α156 * α67)x31 + (α156 * α46)x30 + (α156 * α61)x29 + (α156 * α118)x28 + (α156 * α70)x27 + (α156 * α64)x26 + (α156 * α94)x25 + (α156 * α32)x24 + (α156 * α45)x23

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α156x33 + α(407 % 255)x32 + α223x31 + α202x30 + α217x29 + α(274 % 255)x28 + α226x27 + α220x26 + α250x25 + α188x24 + α201x23

The result is:

α156x33 + α152x32 + α223x31 + α202x30 + α217x29 + α19x28 + α226x27 + α220x26 + α250x25 + α188x24 + α201x23

Now, convert this to integer notation:

228x33 + 73x32 + 9x31 + 112x30 + 155x29 + 90x28 + 72x27 + 172x26 + 108x25 + 165x24 + 56x23

Step 8b: XOR the result with the result from step 7b

Use the result from step 7b to perform the next XOR.

(228 ⊕ 228)x33 + (37 ⊕ 73)x32 + (242 ⊕ 9)x31 + (157 ⊕ 112)x30 + (246 ⊕ 155)x29 + (22 ⊕ 90)x28 + (200 ⊕ 72)x27 + (117 ⊕ 172)x26 + (174 ⊕ 108)x25 + (92 ⊕ 165)x24 + (2 ⊕ 56)x23 + (66 ⊕ 0)x22 + (2 ⊕ 0)x21 + (16 ⊕ 0)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x33 + 108x32 + 251x31 + 237x30 + 109x29 + 76x28 + 128x27 + 217x26 + 194x25 + 249x24 + 58x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

108x32 + 251x31 + 237x30 + 109x29 + 76x28 + 128x27 + 217x26 + 194x25 + 249x24 + 58x23 + 66x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 9a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 108x32. Convert 108x32 to alpha notation. According to the log antilog table, for the integer value 108, the alpha exponent is 250. Therefore 108 = α250. Multiply the generator polynomial by α250:

250 * α0)x32 + (α250 * α251)x31 + (α250 * α67)x30 + (α250 * α46)x29 + (α250 * α61)x28 + (α250 * α118)x27 + (α250 * α70)x26 + (α250 * α64)x25 + (α250 * α94)x24 + (α250 * α32)x23 + (α250 * α45)x22

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α250x32 + α(501 % 255)x31 + α(317 % 255)x30 + α(296 % 255)x29 + α(311 % 255)x28 + α(368 % 255)x27 + α(320 % 255)x26 + α(314 % 255)x25 + α(344 % 255)x24 + α(282 % 255)x23 + α(295 % 255)x22

The result is:

α250x32 + α246x31 + α62x30 + α41x29 + α56x28 + α113x27 + α65x26 + α59x25 + α89x24 + α27x23 + α40x22

Now, convert this to integer notation:

108x32 + 207x31 + 222x30 + 212x29 + 93x28 + 31x27 + 190x26 + 210x25 + 225x24 + 12x23 + 106x22

Step 9b: XOR the result with the result from step 8b

Use the result from step 8b to perform the next XOR.

(108 ⊕ 108)x32 + (251 ⊕ 207)x31 + (237 ⊕ 222)x30 + (109 ⊕ 212)x29 + (76 ⊕ 93)x28 + (128 ⊕ 31)x27 + (217 ⊕ 190)x26 + (194 ⊕ 210)x25 + (249 ⊕ 225)x24 + (58 ⊕ 12)x23 + (66 ⊕ 106)x22 + (2 ⊕ 0)x21 + (16 ⊕ 0)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x32 + 52x31 + 51x30 + 185x29 + 17x28 + 159x27 + 103x26 + 16x25 + 24x24 + 54x23 + 40x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

52x31 + 51x30 + 185x29 + 17x28 + 159x27 + 103x26 + 16x25 + 24x24 + 54x23 + 40x22 + 2x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 10a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 52x31. Convert 52x31 to alpha notation. According to the log antilog table, for the integer value 52, the alpha exponent is 106. Therefore 52 = α106. Multiply the generator polynomial by α106:

106 * α0)x31 + (α106 * α251)x30 + (α106 * α67)x29 + (α106 * α46)x28 + (α106 * α61)x27 + (α106 * α118)x26 + (α106 * α70)x25 + (α106 * α64)x24 + (α106 * α94)x23 + (α106 * α32)x22 + (α106 * α45)x21

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α106x31 + α(357 % 255)x30 + α173x29 + α152x28 + α167x27 + α224x26 + α176x25 + α170x24 + α200x23 + α138x22 + α151x21

The result is:

α106x31 + α102x30 + α173x29 + α152x28 + α167x27 + α224x26 + α176x25 + α170x24 + α200x23 + α138x22 + α151x21

Now, convert this to integer notation:

52x31 + 68x30 + 246x29 + 73x28 + 126x27 + 18x26 + 227x25 + 215x24 + 28x23 + 33x22 + 170x21

Step 10b: XOR the result with the result from step 9b

Use the result from step 9b to perform the next XOR.

(52 ⊕ 52)x31 + (51 ⊕ 68)x30 + (185 ⊕ 246)x29 + (17 ⊕ 73)x28 + (159 ⊕ 126)x27 + (103 ⊕ 18)x26 + (16 ⊕ 227)x25 + (24 ⊕ 215)x24 + (54 ⊕ 28)x23 + (40 ⊕ 33)x22 + (2 ⊕ 170)x21 + (16 ⊕ 0)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x31 + 119x30 + 79x29 + 88x28 + 225x27 + 117x26 + 243x25 + 207x24 + 42x23 + 9x22 + 168x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

119x30 + 79x29 + 88x28 + 225x27 + 117x26 + 243x25 + 207x24 + 42x23 + 9x22 + 168x21 + 16x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 11a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 119x30. Convert 119x30 to alpha notation. According to the log antilog table, for the integer value 119, the alpha exponent is 43. Therefore 119 = α43. Multiply the generator polynomial by α43:

43 * α0)x30 + (α43 * α251)x29 + (α43 * α67)x28 + (α43 * α46)x27 + (α43 * α61)x26 + (α43 * α118)x25 + (α43 * α70)x24 + (α43 * α64)x23 + (α43 * α94)x22 + (α43 * α32)x21 + (α43 * α45)x20

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α43x30 + α(294 % 255)x29 + α110x28 + α89x27 + α104x26 + α161x25 + α113x24 + α107x23 + α137x22 + α75x21 + α88x20

The result is:

α43x30 + α39x29 + α110x28 + α89x27 + α104x26 + α161x25 + α113x24 + α107x23 + α137x22 + α75x21 + α88x20

Now, convert this to integer notation:

119x30 + 53x29 + 103x28 + 225x27 + 13x26 + 209x25 + 31x24 + 104x23 + 158x22 + 15x21 + 254x20

Step 11b: XOR the result with the result from step 10b

Use the result from step 10b to perform the next XOR.

(119 ⊕ 119)x30 + (79 ⊕ 53)x29 + (88 ⊕ 103)x28 + (225 ⊕ 225)x27 + (117 ⊕ 13)x26 + (243 ⊕ 209)x25 + (207 ⊕ 31)x24 + (42 ⊕ 104)x23 + (9 ⊕ 158)x22 + (168 ⊕ 15)x21 + (16 ⊕ 254)x20 + (2 ⊕ 0)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x30 + 122x29 + 63x28 + 0x27 + 120x26 + 34x25 + 208x24 + 66x23 + 151x22 + 167x21 + 238x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

122x29 + 63x28 + 0x27 + 120x26 + 34x25 + 208x24 + 66x23 + 151x22 + 167x21 + 238x20 + 2x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 12a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 122x29. Convert 122x29 to alpha notation. According to the log antilog table, for the integer value 122, the alpha exponent is 229. Therefore 122 = α229. Multiply the generator polynomial by α229:

229 * α0)x29 + (α229 * α251)x28 + (α229 * α67)x27 + (α229 * α46)x26 + (α229 * α61)x25 + (α229 * α118)x24 + (α229 * α70)x23 + (α229 * α64)x22 + (α229 * α94)x21 + (α229 * α32)x20 + (α229 * α45)x19

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α229x29 + α(480 % 255)x28 + α(296 % 255)x27 + α(275 % 255)x26 + α(290 % 255)x25 + α(347 % 255)x24 + α(299 % 255)x23 + α(293 % 255)x22 + α(323 % 255)x21 + α(261 % 255)x20 + α(274 % 255)x19

The result is:

α229x29 + α225x28 + α41x27 + α20x26 + α35x25 + α92x24 + α44x23 + α38x22 + α68x21 + α6x20 + α19x19

Now, convert this to integer notation:

122x29 + 36x28 + 212x27 + 180x26 + 156x25 + 91x24 + 238x23 + 148x22 + 153x21 + 64x20 + 90x19

Step 12b: XOR the result with the result from step 11b

Use the result from step 11b to perform the next XOR.

(122 ⊕ 122)x29 + (63 ⊕ 36)x28 + (0 ⊕ 212)x27 + (120 ⊕ 180)x26 + (34 ⊕ 156)x25 + (208 ⊕ 91)x24 + (66 ⊕ 238)x23 + (151 ⊕ 148)x22 + (167 ⊕ 153)x21 + (238 ⊕ 64)x20 + (2 ⊕ 90)x19 + (236 ⊕ 0)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x29 + 27x28 + 212x27 + 204x26 + 190x25 + 139x24 + 172x23 + 3x22 + 62x21 + 174x20 + 88x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

27x28 + 212x27 + 204x26 + 190x25 + 139x24 + 172x23 + 3x22 + 62x21 + 174x20 + 88x19 + 236x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 13a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 27x28. Convert 27x28 to alpha notation. According to the log antilog table, for the integer value 27, the alpha exponent is 248. Therefore 27 = α248. Multiply the generator polynomial by α248:

248 * α0)x28 + (α248 * α251)x27 + (α248 * α67)x26 + (α248 * α46)x25 + (α248 * α61)x24 + (α248 * α118)x23 + (α248 * α70)x22 + (α248 * α64)x21 + (α248 * α94)x20 + (α248 * α32)x19 + (α248 * α45)x18

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α248x28 + α(499 % 255)x27 + α(315 % 255)x26 + α(294 % 255)x25 + α(309 % 255)x24 + α(366 % 255)x23 + α(318 % 255)x22 + α(312 % 255)x21 + α(342 % 255)x20 + α(280 % 255)x19 + α(293 % 255)x18

The result is:

α248x28 + α244x27 + α60x26 + α39x25 + α54x24 + α111x23 + α63x22 + α57x21 + α87x20 + α25x19 + α38x18

Now, convert this to integer notation:

27x28 + 250x27 + 185x26 + 53x25 + 80x24 + 206x23 + 161x22 + 186x21 + 127x20 + 3x19 + 148x18

Step 13b: XOR the result with the result from step 12b

Use the result from step 12b to perform the next XOR.

(27 ⊕ 27)x28 + (212 ⊕ 250)x27 + (204 ⊕ 185)x26 + (190 ⊕ 53)x25 + (139 ⊕ 80)x24 + (172 ⊕ 206)x23 + (3 ⊕ 161)x22 + (62 ⊕ 186)x21 + (174 ⊕ 127)x20 + (88 ⊕ 3)x19 + (236 ⊕ 148)x18 + (2 ⊕ 0)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x28 + 46x27 + 117x26 + 139x25 + 219x24 + 98x23 + 162x22 + 132x21 + 209x20 + 91x19 + 120x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

46x27 + 117x26 + 139x25 + 219x24 + 98x23 + 162x22 + 132x21 + 209x20 + 91x19 + 120x18 + 2x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 14a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 46x27. Convert 46x27 to alpha notation. According to the log antilog table, for the integer value 46, the alpha exponent is 130. Therefore 46 = α130. Multiply the generator polynomial by α130:

130 * α0)x27 + (α130 * α251)x26 + (α130 * α67)x25 + (α130 * α46)x24 + (α130 * α61)x23 + (α130 * α118)x22 + (α130 * α70)x21 + (α130 * α64)x20 + (α130 * α94)x19 + (α130 * α32)x18 + (α130 * α45)x17

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α130x27 + α(381 % 255)x26 + α197x25 + α176x24 + α191x23 + α248x22 + α200x21 + α194x20 + α224x19 + α162x18 + α175x17

The result is:

α130x27 + α126x26 + α197x25 + α176x24 + α191x23 + α248x22 + α200x21 + α194x20 + α224x19 + α162x18 + α175x17

Now, convert this to integer notation:

46x27 + 102x26 + 141x25 + 227x24 + 65x23 + 27x22 + 28x21 + 50x20 + 18x19 + 191x18 + 255x17

Step 14b: XOR the result with the result from step 13b

Use the result from step 13b to perform the next XOR.

(46 ⊕ 46)x27 + (117 ⊕ 102)x26 + (139 ⊕ 141)x25 + (219 ⊕ 227)x24 + (98 ⊕ 65)x23 + (162 ⊕ 27)x22 + (132 ⊕ 28)x21 + (209 ⊕ 50)x20 + (91 ⊕ 18)x19 + (120 ⊕ 191)x18 + (2 ⊕ 255)x17 + (17 ⊕ 0)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x27 + 19x26 + 6x25 + 56x24 + 35x23 + 185x22 + 152x21 + 227x20 + 73x19 + 199x18 + 253x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

19x26 + 6x25 + 56x24 + 35x23 + 185x22 + 152x21 + 227x20 + 73x19 + 199x18 + 253x17 + 17x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 15a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 19x26. Convert 19x26 to alpha notation. According to the log antilog table, for the integer value 19, the alpha exponent is 14. Therefore 19 = α14. Multiply the generator polynomial by α14:

14 * α0)x26 + (α14 * α251)x25 + (α14 * α67)x24 + (α14 * α46)x23 + (α14 * α61)x22 + (α14 * α118)x21 + (α14 * α70)x20 + (α14 * α64)x19 + (α14 * α94)x18 + (α14 * α32)x17 + (α14 * α45)x16

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α14x26 + α(265 % 255)x25 + α81x24 + α60x23 + α75x22 + α132x21 + α84x20 + α78x19 + α108x18 + α46x17 + α59x16

The result is:

α14x26 + α10x25 + α81x24 + α60x23 + α75x22 + α132x21 + α84x20 + α78x19 + α108x18 + α46x17 + α59x16

Now, convert this to integer notation:

19x26 + 116x25 + 231x24 + 185x23 + 15x22 + 184x21 + 107x20 + 120x19 + 208x18 + 159x17 + 210x16

Step 15b: XOR the result with the result from step 14b

Use the result from step 14b to perform the next XOR.

(19 ⊕ 19)x26 + (6 ⊕ 116)x25 + (56 ⊕ 231)x24 + (35 ⊕ 185)x23 + (185 ⊕ 15)x22 + (152 ⊕ 184)x21 + (227 ⊕ 107)x20 + (73 ⊕ 120)x19 + (199 ⊕ 208)x18 + (253 ⊕ 159)x17 + (17 ⊕ 210)x16 + (2 ⊕ 0)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x26 + 114x25 + 223x24 + 154x23 + 182x22 + 32x21 + 136x20 + 49x19 + 23x18 + 98x17 + 195x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

114x25 + 223x24 + 154x23 + 182x22 + 32x21 + 136x20 + 49x19 + 23x18 + 98x17 + 195x16 + 2x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 16a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 114x25. Convert 114x25 to alpha notation. According to the log antilog table, for the integer value 114, the alpha exponent is 155. Therefore 114 = α155. Multiply the generator polynomial by α155:

155 * α0)x25 + (α155 * α251)x24 + (α155 * α67)x23 + (α155 * α46)x22 + (α155 * α61)x21 + (α155 * α118)x20 + (α155 * α70)x19 + (α155 * α64)x18 + (α155 * α94)x17 + (α155 * α32)x16 + (α155 * α45)x15

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α155x25 + α(406 % 255)x24 + α222x23 + α201x22 + α216x21 + α(273 % 255)x20 + α225x19 + α219x18 + α249x17 + α187x16 + α200x15

The result is:

α155x25 + α151x24 + α222x23 + α201x22 + α216x21 + α18x20 + α225x19 + α219x18 + α249x17 + α187x16 + α200x15

Now, convert this to integer notation:

114x25 + 170x24 + 138x23 + 56x22 + 195x21 + 45x20 + 36x19 + 86x18 + 54x17 + 220x16 + 28x15

Step 16b: XOR the result with the result from step 15b

Use the result from step 15b to perform the next XOR.

(114 ⊕ 114)x25 + (223 ⊕ 170)x24 + (154 ⊕ 138)x23 + (182 ⊕ 56)x22 + (32 ⊕ 195)x21 + (136 ⊕ 45)x20 + (49 ⊕ 36)x19 + (23 ⊕ 86)x18 + (98 ⊕ 54)x17 + (195 ⊕ 220)x16 + (2 ⊕ 28)x15 + (236 ⊕ 0)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x25 + 117x24 + 16x23 + 142x22 + 227x21 + 165x20 + 21x19 + 65x18 + 84x17 + 31x16 + 30x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

117x24 + 16x23 + 142x22 + 227x21 + 165x20 + 21x19 + 65x18 + 84x17 + 31x16 + 30x15 + 236x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 17a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 117x24. Convert 117x24 to alpha notation. According to the log antilog table, for the integer value 117, the alpha exponent is 21. Therefore 117 = α21. Multiply the generator polynomial by α21:

21 * α0)x24 + (α21 * α251)x23 + (α21 * α67)x22 + (α21 * α46)x21 + (α21 * α61)x20 + (α21 * α118)x19 + (α21 * α70)x18 + (α21 * α64)x17 + (α21 * α94)x16 + (α21 * α32)x15 + (α21 * α45)x14

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α21x24 + α(272 % 255)x23 + α88x22 + α67x21 + α82x20 + α139x19 + α91x18 + α85x17 + α115x16 + α53x15 + α66x14

The result is:

α21x24 + α17x23 + α88x22 + α67x21 + α82x20 + α139x19 + α91x18 + α85x17 + α115x16 + α53x15 + α66x14

Now, convert this to integer notation:

117x24 + 152x23 + 254x22 + 194x21 + 211x20 + 66x19 + 163x18 + 214x17 + 124x16 + 40x15 + 97x14

Step 17b: XOR the result with the result from step 16b

Use the result from step 16b to perform the next XOR.

(117 ⊕ 117)x24 + (16 ⊕ 152)x23 + (142 ⊕ 254)x22 + (227 ⊕ 194)x21 + (165 ⊕ 211)x20 + (21 ⊕ 66)x19 + (65 ⊕ 163)x18 + (84 ⊕ 214)x17 + (31 ⊕ 124)x16 + (30 ⊕ 40)x15 + (236 ⊕ 97)x14 + (2 ⊕ 0)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x24 + 136x23 + 112x22 + 33x21 + 118x20 + 87x19 + 226x18 + 130x17 + 99x16 + 54x15 + 141x14 + 2x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

136x23 + 112x22 + 33x21 + 118x20 + 87x19 + 226x18 + 130x17 + 99x16 + 54x15 + 141x14 + 2x13 + 17x12 + 2x11 + 236x10

Step 18a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 136x23. Convert 136x23 to alpha notation. According to the log antilog table, for the integer value 136, the alpha exponent is 103. Therefore 136 = α103. Multiply the generator polynomial by α103:

103 * α0)x23 + (α103 * α251)x22 + (α103 * α67)x21 + (α103 * α46)x20 + (α103 * α61)x19 + (α103 * α118)x18 + (α103 * α70)x17 + (α103 * α64)x16 + (α103 * α94)x15 + (α103 * α32)x14 + (α103 * α45)x13

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α103x23 + α(354 % 255)x22 + α170x21 + α149x20 + α164x19 + α221x18 + α173x17 + α167x16 + α197x15 + α135x14 + α148x13

The result is:

α103x23 + α99x22 + α170x21 + α149x20 + α164x19 + α221x18 + α173x17 + α167x16 + α197x15 + α135x14 + α148x13

Now, convert this to integer notation:

136x23 + 134x22 + 215x21 + 164x20 + 198x19 + 69x18 + 246x17 + 126x16 + 141x15 + 169x14 + 82x13

Step 18b: XOR the result with the result from step 17b

Use the result from step 17b to perform the next XOR.

(136 ⊕ 136)x23 + (112 ⊕ 134)x22 + (33 ⊕ 215)x21 + (118 ⊕ 164)x20 + (87 ⊕ 198)x19 + (226 ⊕ 69)x18 + (130 ⊕ 246)x17 + (99 ⊕ 126)x16 + (54 ⊕ 141)x15 + (141 ⊕ 169)x14 + (2 ⊕ 82)x13 + (17 ⊕ 0)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x23 + 246x22 + 246x21 + 210x20 + 145x19 + 167x18 + 116x17 + 29x16 + 187x15 + 36x14 + 80x13 + 17x12 + 2x11 + 236x10

Discard the lead 0 term to get:

246x22 + 246x21 + 210x20 + 145x19 + 167x18 + 116x17 + 29x16 + 187x15 + 36x14 + 80x13 + 17x12 + 2x11 + 236x10

Step 19a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 246x22. Convert 246x22 to alpha notation. According to the log antilog table, for the integer value 246, the alpha exponent is 173. Therefore 246 = α173. Multiply the generator polynomial by α173:

173 * α0)x22 + (α173 * α251)x21 + (α173 * α67)x20 + (α173 * α46)x19 + (α173 * α61)x18 + (α173 * α118)x17 + (α173 * α70)x16 + (α173 * α64)x15 + (α173 * α94)x14 + (α173 * α32)x13 + (α173 * α45)x12

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α173x22 + α(424 % 255)x21 + α240x20 + α219x19 + α234x18 + α(291 % 255)x17 + α243x16 + α237x15 + α(267 % 255)x14 + α205x13 + α218x12

The result is:

α173x22 + α169x21 + α240x20 + α219x19 + α234x18 + α36x17 + α243x16 + α237x15 + α12x14 + α205x13 + α218x12

Now, convert this to integer notation:

246x22 + 229x21 + 44x20 + 86x19 + 251x18 + 37x17 + 125x16 + 139x15 + 205x14 + 167x13 + 43x12

Step 19b: XOR the result with the result from step 18b

Use the result from step 18b to perform the next XOR.

(246 ⊕ 246)x22 + (246 ⊕ 229)x21 + (210 ⊕ 44)x20 + (145 ⊕ 86)x19 + (167 ⊕ 251)x18 + (116 ⊕ 37)x17 + (29 ⊕ 125)x16 + (187 ⊕ 139)x15 + (36 ⊕ 205)x14 + (80 ⊕ 167)x13 + (17 ⊕ 43)x12 + (2 ⊕ 0)x11 + (236 ⊕ 0)x10

The result is:

0x22 + 19x21 + 254x20 + 199x19 + 92x18 + 81x17 + 96x16 + 48x15 + 233x14 + 247x13 + 58x12 + 2x11 + 236x10

Discard the lead 0 term to get:

19x21 + 254x20 + 199x19 + 92x18 + 81x17 + 96x16 + 48x15 + 233x14 + 247x13 + 58x12 + 2x11 + 236x10

Step 20a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 19x21. Convert 19x21 to alpha notation. According to the log antilog table, for the integer value 19, the alpha exponent is 14. Therefore 19 = α14. Multiply the generator polynomial by α14:

14 * α0)x21 + (α14 * α251)x20 + (α14 * α67)x19 + (α14 * α46)x18 + (α14 * α61)x17 + (α14 * α118)x16 + (α14 * α70)x15 + (α14 * α64)x14 + (α14 * α94)x13 + (α14 * α32)x12 + (α14 * α45)x11

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α14x21 + α(265 % 255)x20 + α81x19 + α60x18 + α75x17 + α132x16 + α84x15 + α78x14 + α108x13 + α46x12 + α59x11

The result is:

α14x21 + α10x20 + α81x19 + α60x18 + α75x17 + α132x16 + α84x15 + α78x14 + α108x13 + α46x12 + α59x11

Now, convert this to integer notation:

19x21 + 116x20 + 231x19 + 185x18 + 15x17 + 184x16 + 107x15 + 120x14 + 208x13 + 159x12 + 210x11

Step 20b: XOR the result with the result from step 19b

Use the result from step 19b to perform the next XOR.

(19 ⊕ 19)x21 + (254 ⊕ 116)x20 + (199 ⊕ 231)x19 + (92 ⊕ 185)x18 + (81 ⊕ 15)x17 + (96 ⊕ 184)x16 + (48 ⊕ 107)x15 + (233 ⊕ 120)x14 + (247 ⊕ 208)x13 + (58 ⊕ 159)x12 + (2 ⊕ 210)x11 + (236 ⊕ 0)x10

The result is:

0x21 + 138x20 + 32x19 + 229x18 + 94x17 + 216x16 + 91x15 + 145x14 + 39x13 + 165x12 + 208x11 + 236x10

Discard the lead 0 term to get:

138x20 + 32x19 + 229x18 + 94x17 + 216x16 + 91x15 + 145x14 + 39x13 + 165x12 + 208x11 + 236x10

Step 21a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 138x20. Convert 138x20 to alpha notation. According to the log antilog table, for the integer value 138, the alpha exponent is 222. Therefore 138 = α222. Multiply the generator polynomial by α222:

222 * α0)x20 + (α222 * α251)x19 + (α222 * α67)x18 + (α222 * α46)x17 + (α222 * α61)x16 + (α222 * α118)x15 + (α222 * α70)x14 + (α222 * α64)x13 + (α222 * α94)x12 + (α222 * α32)x11 + (α222 * α45)x10

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α222x20 + α(473 % 255)x19 + α(289 % 255)x18 + α(268 % 255)x17 + α(283 % 255)x16 + α(340 % 255)x15 + α(292 % 255)x14 + α(286 % 255)x13 + α(316 % 255)x12 + α254x11 + α(267 % 255)x10

The result is:

α222x20 + α218x19 + α34x18 + α13x17 + α28x16 + α85x15 + α37x14 + α31x13 + α61x12 + α254x11 + α12x10

Now, convert this to integer notation:

138x20 + 43x19 + 78x18 + 135x17 + 24x16 + 214x15 + 74x14 + 192x13 + 111x12 + 142x11 + 205x10

Step 21b: XOR the result with the result from step 20b

Use the result from step 20b to perform the next XOR.

(138 ⊕ 138)x20 + (32 ⊕ 43)x19 + (229 ⊕ 78)x18 + (94 ⊕ 135)x17 + (216 ⊕ 24)x16 + (91 ⊕ 214)x15 + (145 ⊕ 74)x14 + (39 ⊕ 192)x13 + (165 ⊕ 111)x12 + (208 ⊕ 142)x11 + (236 ⊕ 205)x10

The result is:

0x20 + 11x19 + 171x18 + 217x17 + 192x16 + 141x15 + 219x14 + 231x13 + 202x12 + 94x11 + 33x10

Discard the lead 0 term to get:

11x19 + 171x18 + 217x17 + 192x16 + 141x15 + 219x14 + 231x13 + 202x12 + 94x11 + 33x10

Step 22a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 11x19. Convert 11x19 to alpha notation. According to the log antilog table, for the integer value 11, the alpha exponent is 238. Therefore 11 = α238. Multiply the generator polynomial by α238:

238 * α0)x19 + (α238 * α251)x18 + (α238 * α67)x17 + (α238 * α46)x16 + (α238 * α61)x15 + (α238 * α118)x14 + (α238 * α70)x13 + (α238 * α64)x12 + (α238 * α94)x11 + (α238 * α32)x10 + (α238 * α45)x9

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α238x19 + α(489 % 255)x18 + α(305 % 255)x17 + α(284 % 255)x16 + α(299 % 255)x15 + α(356 % 255)x14 + α(308 % 255)x13 + α(302 % 255)x12 + α(332 % 255)x11 + α(270 % 255)x10 + α(283 % 255)x9

The result is:

α238x19 + α234x18 + α50x17 + α29x16 + α44x15 + α101x14 + α53x13 + α47x12 + α77x11 + α15x10 + α28x9

Now, convert this to integer notation:

11x19 + 251x18 + 5x17 + 48x16 + 238x15 + 34x14 + 40x13 + 35x12 + 60x11 + 38x10 + 24x9

Step 22b: XOR the result with the result from step 21b

Use the result from step 21b to perform the next XOR.

(11 ⊕ 11)x19 + (171 ⊕ 251)x18 + (217 ⊕ 5)x17 + (192 ⊕ 48)x16 + (141 ⊕ 238)x15 + (219 ⊕ 34)x14 + (231 ⊕ 40)x13 + (202 ⊕ 35)x12 + (94 ⊕ 60)x11 + (33 ⊕ 38)x10 + (0 ⊕ 24)x9

The result is:

0x19 + 80x18 + 220x17 + 240x16 + 99x15 + 249x14 + 207x13 + 233x12 + 98x11 + 7x10 + 24x9

Discard the lead 0 term to get:

80x18 + 220x17 + 240x16 + 99x15 + 249x14 + 207x13 + 233x12 + 98x11 + 7x10 + 24x9

Step 23a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 80x18. Convert 80x18 to alpha notation. According to the log antilog table, for the integer value 80, the alpha exponent is 54. Therefore 80 = α54. Multiply the generator polynomial by α54:

54 * α0)x18 + (α54 * α251)x17 + (α54 * α67)x16 + (α54 * α46)x15 + (α54 * α61)x14 + (α54 * α118)x13 + (α54 * α70)x12 + (α54 * α64)x11 + (α54 * α94)x10 + (α54 * α32)x9 + (α54 * α45)x8

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α54x18 + α(305 % 255)x17 + α121x16 + α100x15 + α115x14 + α172x13 + α124x12 + α118x11 + α148x10 + α86x9 + α99x8

The result is:

α54x18 + α50x17 + α121x16 + α100x15 + α115x14 + α172x13 + α124x12 + α118x11 + α148x10 + α86x9 + α99x8

Now, convert this to integer notation:

80x18 + 5x17 + 118x16 + 17x15 + 124x14 + 123x13 + 151x12 + 199x11 + 82x10 + 177x9 + 134x8

Step 23b: XOR the result with the result from step 22b

Use the result from step 22b to perform the next XOR.

(80 ⊕ 80)x18 + (220 ⊕ 5)x17 + (240 ⊕ 118)x16 + (99 ⊕ 17)x15 + (249 ⊕ 124)x14 + (207 ⊕ 123)x13 + (233 ⊕ 151)x12 + (98 ⊕ 199)x11 + (7 ⊕ 82)x10 + (24 ⊕ 177)x9 + (0 ⊕ 134)x8

The result is:

0x18 + 217x17 + 134x16 + 114x15 + 133x14 + 180x13 + 126x12 + 165x11 + 85x10 + 169x9 + 134x8

Discard the lead 0 term to get:

217x17 + 134x16 + 114x15 + 133x14 + 180x13 + 126x12 + 165x11 + 85x10 + 169x9 + 134x8

Step 24a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 217x17. Convert 217x17 to alpha notation. According to the log antilog table, for the integer value 217, the alpha exponent is 96. Therefore 217 = α96. Multiply the generator polynomial by α96:

96 * α0)x17 + (α96 * α251)x16 + (α96 * α67)x15 + (α96 * α46)x14 + (α96 * α61)x13 + (α96 * α118)x12 + (α96 * α70)x11 + (α96 * α64)x10 + (α96 * α94)x9 + (α96 * α32)x8 + (α96 * α45)x7

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α96x17 + α(347 % 255)x16 + α163x15 + α142x14 + α157x13 + α214x12 + α166x11 + α160x10 + α190x9 + α128x8 + α141x7

The result is:

α96x17 + α92x16 + α163x15 + α142x14 + α157x13 + α214x12 + α166x11 + α160x10 + α190x9 + α128x8 + α141x7

Now, convert this to integer notation:

217x17 + 91x16 + 99x15 + 42x14 + 213x13 + 249x12 + 63x11 + 230x10 + 174x9 + 133x8 + 21x7

Step 24b: XOR the result with the result from step 23b

Use the result from step 23b to perform the next XOR.

(217 ⊕ 217)x17 + (134 ⊕ 91)x16 + (114 ⊕ 99)x15 + (133 ⊕ 42)x14 + (180 ⊕ 213)x13 + (126 ⊕ 249)x12 + (165 ⊕ 63)x11 + (85 ⊕ 230)x10 + (169 ⊕ 174)x9 + (134 ⊕ 133)x8 + (0 ⊕ 21)x7

The result is:

0x17 + 221x16 + 17x15 + 175x14 + 97x13 + 135x12 + 154x11 + 179x10 + 7x9 + 3x8 + 21x7

Discard the lead 0 term to get:

221x16 + 17x15 + 175x14 + 97x13 + 135x12 + 154x11 + 179x10 + 7x9 + 3x8 + 21x7

Step 25a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 221x16. Convert 221x16 to alpha notation. According to the log antilog table, for the integer value 221, the alpha exponent is 204. Therefore 221 = α204. Multiply the generator polynomial by α204:

204 * α0)x16 + (α204 * α251)x15 + (α204 * α67)x14 + (α204 * α46)x13 + (α204 * α61)x12 + (α204 * α118)x11 + (α204 * α70)x10 + (α204 * α64)x9 + (α204 * α94)x8 + (α204 * α32)x7 + (α204 * α45)x6

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α204x16 + α(455 % 255)x15 + α(271 % 255)x14 + α250x13 + α(265 % 255)x12 + α(322 % 255)x11 + α(274 % 255)x10 + α(268 % 255)x9 + α(298 % 255)x8 + α236x7 + α249x6

The result is:

α204x16 + α200x15 + α16x14 + α250x13 + α10x12 + α67x11 + α19x10 + α13x9 + α43x8 + α236x7 + α249x6

Now, convert this to integer notation:

221x16 + 28x15 + 76x14 + 108x13 + 116x12 + 194x11 + 90x10 + 135x9 + 119x8 + 203x7 + 54x6

Step 25b: XOR the result with the result from step 24b

Use the result from step 24b to perform the next XOR.

(221 ⊕ 221)x16 + (17 ⊕ 28)x15 + (175 ⊕ 76)x14 + (97 ⊕ 108)x13 + (135 ⊕ 116)x12 + (154 ⊕ 194)x11 + (179 ⊕ 90)x10 + (7 ⊕ 135)x9 + (3 ⊕ 119)x8 + (21 ⊕ 203)x7 + (0 ⊕ 54)x6

The result is:

0x16 + 13x15 + 227x14 + 13x13 + 243x12 + 88x11 + 233x10 + 128x9 + 116x8 + 222x7 + 54x6

Discard the lead 0 term to get:

13x15 + 227x14 + 13x13 + 243x12 + 88x11 + 233x10 + 128x9 + 116x8 + 222x7 + 54x6

Step 26a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 13x15. Convert 13x15 to alpha notation. According to the log antilog table, for the integer value 13, the alpha exponent is 104. Therefore 13 = α104. Multiply the generator polynomial by α104:

104 * α0)x15 + (α104 * α251)x14 + (α104 * α67)x13 + (α104 * α46)x12 + (α104 * α61)x11 + (α104 * α118)x10 + (α104 * α70)x9 + (α104 * α64)x8 + (α104 * α94)x7 + (α104 * α32)x6 + (α104 * α45)x5

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α104x15 + α(355 % 255)x14 + α171x13 + α150x12 + α165x11 + α222x10 + α174x9 + α168x8 + α198x7 + α136x6 + α149x5

The result is:

α104x15 + α100x14 + α171x13 + α150x12 + α165x11 + α222x10 + α174x9 + α168x8 + α198x7 + α136x6 + α149x5

Now, convert this to integer notation:

13x15 + 17x14 + 179x13 + 85x12 + 145x11 + 138x10 + 241x9 + 252x8 + 7x7 + 79x6 + 164x5

Step 26b: XOR the result with the result from step 25b

Use the result from step 25b to perform the next XOR.

(13 ⊕ 13)x15 + (227 ⊕ 17)x14 + (13 ⊕ 179)x13 + (243 ⊕ 85)x12 + (88 ⊕ 145)x11 + (233 ⊕ 138)x10 + (128 ⊕ 241)x9 + (116 ⊕ 252)x8 + (222 ⊕ 7)x7 + (54 ⊕ 79)x6 + (0 ⊕ 164)x5

The result is:

0x15 + 242x14 + 190x13 + 166x12 + 201x11 + 99x10 + 113x9 + 136x8 + 217x7 + 121x6 + 164x5

Discard the lead 0 term to get:

242x14 + 190x13 + 166x12 + 201x11 + 99x10 + 113x9 + 136x8 + 217x7 + 121x6 + 164x5

Step 27a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 242x14. Convert 242x14 to alpha notation. According to the log antilog table, for the integer value 242, the alpha exponent is 213. Therefore 242 = α213. Multiply the generator polynomial by α213:

213 * α0)x14 + (α213 * α251)x13 + (α213 * α67)x12 + (α213 * α46)x11 + (α213 * α61)x10 + (α213 * α118)x9 + (α213 * α70)x8 + (α213 * α64)x7 + (α213 * α94)x6 + (α213 * α32)x5 + (α213 * α45)x4

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α213x14 + α(464 % 255)x13 + α(280 % 255)x12 + α(259 % 255)x11 + α(274 % 255)x10 + α(331 % 255)x9 + α(283 % 255)x8 + α(277 % 255)x7 + α(307 % 255)x6 + α245x5 + α(258 % 255)x4

The result is:

α213x14 + α209x13 + α25x12 + α4x11 + α19x10 + α76x9 + α28x8 + α22x7 + α52x6 + α245x5 + α3x4

Now, convert this to integer notation:

242x14 + 162x13 + 3x12 + 16x11 + 90x10 + 30x9 + 24x8 + 234x7 + 20x6 + 233x5 + 8x4

Step 27b: XOR the result with the result from step 26b

Use the result from step 26b to perform the next XOR.

(242 ⊕ 242)x14 + (190 ⊕ 162)x13 + (166 ⊕ 3)x12 + (201 ⊕ 16)x11 + (99 ⊕ 90)x10 + (113 ⊕ 30)x9 + (136 ⊕ 24)x8 + (217 ⊕ 234)x7 + (121 ⊕ 20)x6 + (164 ⊕ 233)x5 + (0 ⊕ 8)x4

The result is:

0x14 + 28x13 + 165x12 + 217x11 + 57x10 + 111x9 + 144x8 + 51x7 + 109x6 + 77x5 + 8x4

Discard the lead 0 term to get:

28x13 + 165x12 + 217x11 + 57x10 + 111x9 + 144x8 + 51x7 + 109x6 + 77x5 + 8x4

Step 28a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 28x13. Convert 28x13 to alpha notation. According to the log antilog table, for the integer value 28, the alpha exponent is 200. Therefore 28 = α200. Multiply the generator polynomial by α200:

200 * α0)x13 + (α200 * α251)x12 + (α200 * α67)x11 + (α200 * α46)x10 + (α200 * α61)x9 + (α200 * α118)x8 + (α200 * α70)x7 + (α200 * α64)x6 + (α200 * α94)x5 + (α200 * α32)x4 + (α200 * α45)x3

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α200x13 + α(451 % 255)x12 + α(267 % 255)x11 + α246x10 + α(261 % 255)x9 + α(318 % 255)x8 + α(270 % 255)x7 + α(264 % 255)x6 + α(294 % 255)x5 + α232x4 + α245x3

The result is:

α200x13 + α196x12 + α12x11 + α246x10 + α6x9 + α63x8 + α15x7 + α9x6 + α39x5 + α232x4 + α245x3

Now, convert this to integer notation:

28x13 + 200x12 + 205x11 + 207x10 + 64x9 + 161x8 + 38x7 + 58x6 + 53x5 + 247x4 + 233x3

Step 28b: XOR the result with the result from step 27b

Use the result from step 27b to perform the next XOR.

(28 ⊕ 28)x13 + (165 ⊕ 200)x12 + (217 ⊕ 205)x11 + (57 ⊕ 207)x10 + (111 ⊕ 64)x9 + (144 ⊕ 161)x8 + (51 ⊕ 38)x7 + (109 ⊕ 58)x6 + (77 ⊕ 53)x5 + (8 ⊕ 247)x4 + (0 ⊕ 233)x3

The result is:

0x13 + 109x12 + 20x11 + 246x10 + 47x9 + 49x8 + 21x7 + 87x6 + 120x5 + 255x4 + 233x3

Discard the lead 0 term to get:

109x12 + 20x11 + 246x10 + 47x9 + 49x8 + 21x7 + 87x6 + 120x5 + 255x4 + 233x3

Step 29a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 109x12. Convert 109x12 to alpha notation. According to the log antilog table, for the integer value 109, the alpha exponent is 133. Therefore 109 = α133. Multiply the generator polynomial by α133:

133 * α0)x12 + (α133 * α251)x11 + (α133 * α67)x10 + (α133 * α46)x9 + (α133 * α61)x8 + (α133 * α118)x7 + (α133 * α70)x6 + (α133 * α64)x5 + (α133 * α94)x4 + (α133 * α32)x3 + (α133 * α45)x2

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α133x12 + α(384 % 255)x11 + α200x10 + α179x9 + α194x8 + α251x7 + α203x6 + α197x5 + α227x4 + α165x3 + α178x2

The result is:

α133x12 + α129x11 + α200x10 + α179x9 + α194x8 + α251x7 + α203x6 + α197x5 + α227x4 + α165x3 + α178x2

Now, convert this to integer notation:

109x12 + 23x11 + 28x10 + 75x9 + 50x8 + 216x7 + 224x6 + 141x5 + 144x4 + 145x3 + 171x2

Step 29b: XOR the result with the result from step 28b

Use the result from step 28b to perform the next XOR.

(109 ⊕ 109)x12 + (20 ⊕ 23)x11 + (246 ⊕ 28)x10 + (47 ⊕ 75)x9 + (49 ⊕ 50)x8 + (21 ⊕ 216)x7 + (87 ⊕ 224)x6 + (120 ⊕ 141)x5 + (255 ⊕ 144)x4 + (233 ⊕ 145)x3 + (0 ⊕ 171)x2

The result is:

0x12 + 3x11 + 234x10 + 100x9 + 3x8 + 205x7 + 183x6 + 245x5 + 111x4 + 120x3 + 171x2

Discard the lead 0 term to get:

3x11 + 234x10 + 100x9 + 3x8 + 205x7 + 183x6 + 245x5 + 111x4 + 120x3 + 171x2

Step 30a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 3x11. Convert 3x11 to alpha notation. According to the log antilog table, for the integer value 3, the alpha exponent is 25. Therefore 3 = α25. Multiply the generator polynomial by α25:

25 * α0)x11 + (α25 * α251)x10 + (α25 * α67)x9 + (α25 * α46)x8 + (α25 * α61)x7 + (α25 * α118)x6 + (α25 * α70)x5 + (α25 * α64)x4 + (α25 * α94)x3 + (α25 * α32)x2 + (α25 * α45)x1

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α25x11 + α(276 % 255)x10 + α92x9 + α71x8 + α86x7 + α143x6 + α95x5 + α89x4 + α119x3 + α57x2 + α70x1

The result is:

α25x11 + α21x10 + α92x9 + α71x8 + α86x7 + α143x6 + α95x5 + α89x4 + α119x3 + α57x2 + α70x1

Now, convert this to integer notation:

3x11 + 117x10 + 91x9 + 188x8 + 177x7 + 84x6 + 226x5 + 225x4 + 147x3 + 186x2 + 94x1

Step 30b: XOR the result with the result from step 29b

Use the result from step 29b to perform the next XOR.

(3 ⊕ 3)x11 + (234 ⊕ 117)x10 + (100 ⊕ 91)x9 + (3 ⊕ 188)x8 + (205 ⊕ 177)x7 + (183 ⊕ 84)x6 + (245 ⊕ 226)x5 + (111 ⊕ 225)x4 + (120 ⊕ 147)x3 + (171 ⊕ 186)x2 + (0 ⊕ 94)x1

The result is:

0x11 + 159x10 + 63x9 + 191x8 + 124x7 + 227x6 + 23x5 + 142x4 + 235x3 + 17x2 + 94x1

Discard the lead 0 term to get:

159x10 + 63x9 + 191x8 + 124x7 + 227x6 + 23x5 + 142x4 + 235x3 + 17x2 + 94x1

Step 31a: Multiply the Generator Polynomial by the Lead Term of the XOR result from the previous step

Next, multiply the generator polynomial by the lead term of the XOR result from the previous step. The lead term in this case is 159x10. Convert 159x10 to alpha notation. According to the log antilog table, for the integer value 159, the alpha exponent is 46. Therefore 159 = α46. Multiply the generator polynomial by α46:

46 * α0)x10 + (α46 * α251)x9 + (α46 * α67)x8 + (α46 * α46)x7 + (α46 * α61)x6 + (α46 * α118)x5 + (α46 * α70)x4 + (α46 * α64)x3 + (α46 * α94)x2 + (α46 * α32)x1 + (α46 * α45)x0

The exponents of the alphas are added together. In this case, at least one of the exponents is larger than 255, so perform modulo 255 as follows:

α46x10 + α(297 % 255)x9 + α113x8 + α92x7 + α107x6 + α164x5 + α116x4 + α110x3 + α140x2 + α78x1 + α91x0

The result is:

α46x10 + α42x9 + α113x8 + α92x7 + α107x6 + α164x5 + α116x4 + α110x3 + α140x2 + α78x1 + α91x0

Now, convert this to integer notation:

159x10 + 181x9 + 31x8 + 91x7 + 104x6 + 198x5 + 248x4 + 103x3 + 132x2 + 120x1 + 163

Step 31b: XOR the result with the result from step 30b

Use the result from step 30b to perform the next XOR.

(159 ⊕ 159)x10 + (63 ⊕ 181)x9 + (191 ⊕ 31)x8 + (124 ⊕ 91)x7 + (227 ⊕ 104)x6 + (23 ⊕ 198)x5 + (142 ⊕ 248)x4 + (235 ⊕ 103)x3 + (17 ⊕ 132)x2 + (94 ⊕ 120)x1 + (0 ⊕ 163)x0

The result is:

0x10 + 138x9 + 160x8 + 39x7 + 139x6 + 209x5 + 118x4 + 140x3 + 149x2 + 38x1 + 163

Discard the lead 0 term to get:

138x9 + 160x8 + 39x7 + 139x6 + 209x5 + 118x4 + 140x3 + 149x2 + 38x1 + 163

Use the terms of the remainder as the error correction codewords

The division has been performed 31 times, which is the number of terms in the message polynomial. This means that the division is complete and the terms of the above polynomial are the error correction codewords to use for the original message polynomial:

138  160  39  139  209  118  140  149  38  163